

Product Portfolio 2017

Pumps I Automation

Type Series Index

Amacan K	49	Hya-Duo D FL Compact	41	Sewabloc	51
Amacan P	49	Hya-Eco VP	42	Sewatec	51
Amacan S	49	Hyamat K	42	SEZ / SEZT / PHZ / PNZ	62
Amacontrol	67	Hyamat SVP	42	SNW / PNW	62
Ama-Drainer 4/5	44	Hyamat V	42	SPY	62
Ama-Drainer 80, 100	45	Hya-Rain / Hya-Rain N	38	SRP	47
Ama-Drainer N 301 – 358	44	Hya-Rain Eco	38	Surpress Eco SE.2.B	42
Ama-Drainer-Box	46	Hya-Solo D	40	Surpress Eco SE.2.B VP	43
Ama-Drainer-Box Mini	46	Hya-Solo D FL	41	Surpress Feu SFE	44
AmaDS ³	45	Hya-Solo D FL Compact	41	Surpress SP	44
Amajet	50	Hya-Solo DSV	41	Surpress SP VP	44
Amaline	50	Hya-Solo EV	40	Surpressbloc SB	43
Amamix	50	Hyatronic N	67	Surpresschrom SIC.2	43
Ama-Porter CK Pump Station	47		07	Surpresschrom SIC.2 SVP	43
•			24	•	
Ama-Porter F / S	45	ILN / ILNE / ILNS	31	Surpresschrom SIC.2 V	43
Amaprop	50	ILNC / ILNCE / ILNCS	31		
Amarex KRT	48	INVCP / INVCN	37	TBC	52
Amarex KRT, with convection cooling	48	Ixo N	39		
Amarex KRT, with jacket cooling	48	Ixo-Pro	40	UPA 150C	56
Amarex N	48			UPA 200, 200B, 250C	56
Amarex N S32	48	Kondensat-Lift	46	UPA 300, 350	56
AU	55	KSB Delta Compact	40	UPA Control	66
AU Monobloc	55		27	UPAchrom 100 CC	56
	22	KSB SuPremE			
		KSB UMA-S	27	UPAchrom 100 CN	56
BEV	57	KWP / KWP-Bloc	51	UPZ, BSX-BSF	57
Beveron	62				
BOA-Systronic	67	LCC-M	52	Vitacast	60
-		LCC-R	52	Vitachrom	59
Calio	29	LCV	53	Vitalobe	60
Calio S	29	LevelControl Basic 2	66	Vitaprime	60
Calio-Therm	28		53	•	60
		LHD		Vitastage	60
Calio-Therm NC	28	LSA-S	52		
Calio-Therm S	29	LUV / LUVA	61	WBC	52
Calio-Therm S NC/NCV	28	LUV Nuclear	64	WKTB	62
Cervomatic EDP.2	66			WKTR	37
CHTA / CHTC / CHTD	61	Magnochem	35		
CHTR	36	Magnochem-Bloc	35	YNK	61
CINCP / CINCN	37	MDX	53		01
	47		53	7\\/	E /
CK 800 Pump Station		Mega		ZW	54
CK 1000 Pump Station	47	Megabloc	33		
Comeo	58	MegaCPK	34		
Compacta	46	Megaline	31		
Controlmatic E	66	Meganorm	33		
Controlmatic E.2	66	MHD	53		
CPKN	34	mini-Compacta	46		
CTN	36	MK / MKY	45		
	50	Movitec	58		
DU / EU	6F		58		
DUTED	65	Movitec H(S)I			
		Movitec VCI	58		
EDS	65	Movitec VME	39		
Emporia CP	38	Multi Eco	39		
Emporia MB	38	Multi Eco-Pro	39		
Emporia PD	38	Multi Eco-Top	39		
Etabloc	32	Multitec	58		
Etabloc SYT	34	Multitec-RO	65		
Etachrom B	32		00		
Etachrom L	32	Omora	59		
		Omega	29		
Etaline Etaline DI	30	DCD	62		
Etaline DL	30	PSR	63		
Etaline L	30	PumpDrive 2 / PumpDrive 2 Eco	27		
Etaline SYT	34	PumpMeter	27		
Etaline Z	30				
Etaline-R	30	RC / RCV	65		
Etanorm	31	RDLO	59		
Etanorm SYT / RSY	34	RDLP	59		
Etanorm V	32	RER	63		
Etanorm-R	32	RHD	63		
Etaprime B	55	RHM	64		
	55				
Etaprime L Etasoso / Etasoso L	35	RHR Bio Eco N	64		
Etaseco / Etaseco-l		Rio-Eco N	29		
Etaseco RVP	25	Rio-Eco Therm N	28		
EVERATIC ROY N	35		~~		
Evamatic-Box N	46	Rio-Eco Z N	29		
EZ B/L		Rio-Eco Z N Rio-Therm N	28		
EZ B/L	46 55	Rio-Eco Z N Rio-Therm N Rotex	28 45		
	46	Rio-Eco Z N Rio-Therm N	28		
EZ B/L	46 55	Rio-Eco Z N Rio-Therm N Rotex RPH	28 45		
ez B/L FGD	46 55 53	Rio-Eco Z N Rio-Therm N Rotex RPH RPHb	28 45 35 36		
EZ B/L FGD Filtra N	46 55 53 40	Rio-Eco Z N Rio-Therm N Rotex RPH RPHb RPHmdp	28 45 35 36 36		
EZ B/L FGD Filtra N HGB / HGC / HGD	46 55 53 40 61	Rio-Eco Z N Rio-Therm N Rotex RPH RPHb RPHmdp RPH-V	28 45 35 36 36 36		
EZ B/L FGD Filtra N HGB / HGC / HGD HGM	46 55 53 40 61 61	Rio-Eco Z N Rio-Therm N Rotex RPH RPHb RPHmdp RPH-V RSR	28 45 35 36 36 36 63		
EZ B/L FGD Filtra N HGB / HGC / HGD HGM HPH	46 55 53 40 61 61 33	Rio-Eco Z N Rio-Therm N Rotex RPH RPHb RPHmdp RPH-V RSR RUV	28 45 36 36 36 63 63		
EZ B/L FGD Filtra N HGB / HGC / HGD HGM HPH HPK	46 55 40 61 61 33 33	Rio-Eco Z N Rio-Therm N Rotex RPH RPHb RPHmdp RPH-V RSR RUV RVM	28 45 36 36 36 63 63 63 64		
EZ B/L FGD Filtra N HGB / HGC / HGD HGM HPH HPK HPK-L	46 55 53 40 61 61 33 33 33 33	Rio-Eco Z N Rio-Therm N Rotex RPH RPHb RPHmdp RPH-V RSR RUV RVM RVM	28 45 36 36 36 63 63 64 64		
EZ B/L FGD Filtra N HGB / HGC / HGD HGM HPH HPK HPK-L HVF	46 55 53 40 61 61 33 33 33 33 54	Rio-Eco Z N Rio-Therm N Rotex RPH RPHb RPHmdp RPH-V RSR RUV RVM	28 45 36 36 36 63 63 63 64		
EZ B/L FGD Filtra N HGB / HGC / HGD HGM HPH HPK HPK-L	46 55 53 40 61 61 33 33 33 33	Rio-Eco Z N Rio-Therm N Rotex RPH RPHb RPHmdp RPH-V RSR RUV RVM RVM	28 45 36 36 36 63 63 64 64		

Our tradition: Competence since 1871

We have supplied generations of customers worldwide with pumps, valves, automation products and services. A company with that kind of experience knows that success is a process based on a stream of innovations. A process made possible by a close working alliance between developer and user, between production and practice.

Partners achieve more together. We do everything possible to ensure that our customers always have access to the ideal product and system solution. KSB is a loyal partner. And a strong one:

- Over 140 years' experience
- Present in more than 100 countries
- More than 16,000 employees
- More than 170 service centres worldwide
- Approximately 3,000 service specialists

Single-source supplier: your partner for pumps, valves and service

We assist our customers right through the product life cycle

A comprehensive product range, short response times and tailored service and spare parts solutions – no other competitor offers a comparable range of products and services. In all phases of the product life cycle, we are on hand to ensure that our customers secure long-term value from their systems.

We offer our customers a variety of services and spare parts solutions around pumps, valves, and other rotating equipment – also for non-KSB products:

- Technical consultancy
- Installation and commissioning
- Services provided on-site and in our service centres
- Inspection and maintenance

- Maintenance inspection management
- Framework agreements such as TPM[®] Total Pump Management
- Efficiency analysis with SES System Efficiency Service or Pump Operation Check
- Reverse engineering
- Inventory management
- Retrofitting as an alternative to buying a new product
- Spare parts in manufacturer's quality
- On-site training sessions
- Refurbishment and decommissioning

Ready wherever you are: with a global service network and a 24-hour emergency service.

Our mission: Certified quality assurance

First-class products and excellent service take top priority at KSB. To maintain this level of excellence, we have developed a modern quality management system with globally applicable guidelines. It is based on the Business Excellence model of the European Foundation for Quality Management, which already ensures improved quality management Europewide.

Our guidelines define uniform quality for all KSB locations and have helped us to optimise our manufacturing processes. The results are shorter delivery times and global availability of our products. These guidelines govern the way we act so comprehensively that even the competence of our consulting and the good value for money we offer are clearly stipulated. Like the 'Made in Germany' quality seal, we introduced internal certification as a sign of the highest quality: 'Made by KSB'.

Our five key goals:

- Maximum customer satisfaction: We do everything to fulfil our customers' wishes on time and in full.
- Fostering quality awareness: We put our quality commitment into daily practice – from executives to employees, whose qualifications and competence we foster through continuing training.
- **Prevention rather than cure:** We systematically analyse errors and prevent the causes.
- Improvement in quality: We continually optimise our processes in order to work more efficiently.
- Involvement of suppliers: We attach great importance to working together fairly and openly to achieve our shared goals.

As a signatory to the United Nations Global Compact, KSB is committed to endorsing the ten principles of the international community in the areas of human rights, labour standards, environmental protection and anticorruption.

FluidFuture[®]: the energy-saving concept for your system

Many systems do run reliably but they also use a lot more power than necessary. The solution: efficiency optimisation with FluidFuture[®] in four steps. We look at the entire hydraulic system to achieve maximum energy efficiency throughout the life cycle. The optimisation costs will pay for themselves within a short period through the high energy savings that can be made.

The process and its four steps are clearly defined – based on extensive expertise and experience. This systematic and targeted approach ensures maximum savings at minimum costs. Perfectly matching the hydraulic system, drive and automation products as well as the piping dimensions can result in savings of up to 60 %. We reduce the operating costs of your system by combining our expert knowledge with smart products and services. This is our joint contribution towards an energy-efficient future.

More on FluidFuture[®]: www.ksb.com/fluidfuture

General Information

ErP	ErP regulations stipulating new, stricter minimum efficiency values became effective at the start of 2015. Since then, only pumps and motors which satisfy the energy efficiency requirements of the European Union's ErP Directive may be placed on the market. For KSB's products this is child's play. They are so efficient, many actually exceed the values required since 2015 – some even those applicable from 2017 as per the ErP regulations.
Regional products	Not all depicted products are available for sale in every country. Products only available in individual regions are indicated accordingly. Please contact your sales representative for details.
Trademark rights	All trademarks or company logos shown in the catalogue are protected by trademark rights owned by KSB Aktiengesellschaft and/or a KSB Group company. The absence of the "®" symbol should not be interpreted to mean that the term is not a registered trademark.
Product illustrations	The products illustrated as examples may include options and accessories incurring a surcharge. Subject to reasonable modifications due to technical enhancements.

Pumps

Design / Application	Type series	Page	ErP	Factory- automated	Automation available	Water Transport and Treatment	Industry	Energy Conversion	Building Services	Solids Transport
	Calio-Therm S NC/NCV	28						-		
Drinking water circulators, fixed speed	Rio-Therm N	28								
5	Calio-Therm NC	28								
	Rio-Eco Therm N	28								
Drinking water circulators, variable speed	Calio-Therm	28								
	Calio-Therm S	29								
	Calio S	29								
	Calio	29								
Circulators, variable speed	Rio-Eco N	29		_					_	
	Rio-Eco Z N	29	-						_	
	Etaline L	30	-	_					-	
	Etaline DL	30	-		-		-		-	
	Etaline	30			-		-		-	
	Etaline Z	30	-		-		-		-	
In-line pumps										
	Etaline-R	30								
	ILN / ILNE / ILNS	31								
	ILNC / ILNCE / ILNCS	31								
	Megaline	31								
	Etanorm	31								
	Etanorm-R	32								
	Etabloc	32								
Standardised / close-coupled pumps	Etachrom B	32								
	Etachrom L	32								
	Etanorm V	32								
	Meganorm	33								
	Megabloc	33								
	HPK-L	33								
Hot water pumps	HPH	33								
	НРК	33								
	Etanorm SYT / RSY	34								
Hot water / thermal oil pumps	Etabloc SYT	34								
	Etaline SYT	34								
	MegaCPK	34								
Standardised chemical pumps	CPKN	34								
	Magnochem	35								
	Magnochem-Bloc	35								
Seal-less pumps	Etaseco / Etaseco-I	35								
	Etaseco RVP	35								
	RPH	35								
	RPHb	36								
	RPH-V	36					-	-		
	RPHmdp	36					-	-		
	CTN	36					-			
Process pumps	CHTR	36								
	CINCP / CINCN	37								
	INVCP / INVCN	37						-		
							_			
	RWCP / RWCN	37					_			
	WKTR	37		-		_				
Rainwater harvesting systems	Hya-Rain / Hya-Rain N	38		-						
	Hya-Rain Eco	38								

Design / Application	Type series	Page	ErP	Factory- automated	Automation available	Water Transport and Treatment	Industry	Energy Conversion	Building Services	Solids Transport
	Emporia CP	38								
	Emporia MB	38								
	Emporia PD	38								
	Multi Eco	39								
Domestic water supply systems with automatic control unit / Swimming pool	Multi Eco-Pro	39								
pumps	Multi Eco-Top	39								
	Movitec VME	39								
	Ixo N	39								
	Ixo-Pro	40								
	Filtra N	40								
	KSB Delta Compact	40								
	Hya-Solo EV	40								
	Hya-Solo D	40								
	Hya-Solo DSV	41								
	Hya-Solo D FL	41								
	Hya-Duo D FL	41								
	Hya-Solo D FL Compact	41								
	Hya-Duo D FL Compact	41								
	Surpress Eco SE.2.B	42								
	Hya-Eco VP	42								
Pressure booster systems	Hyamat K	42								
	Hyamat V	42								
	Hyamat SVP	42								
	Surpress Eco SE.2.B VP	43								
	Surpresschrom SIC.2	43								
	Surpresschrom SIC.2 V	43								
	Surpresschrom SIC.2 SVP	43								
	Surpressbloc SB	43								
	Surpress Feu SFE	44								
	Surpress SP	44								
	Surpress SP VP	44								
	Ama-Drainer N 301 – 358	44								
	Ama-Drainer 4 / 5	44								
	Ama-Drainer 80, 100	45								
Drainage pumps / waste water pumps	Ama-Porter F / S	45								
	Rotex	45								
	MK / MKY	45								
	AmaDS ³	45								
	Kondensat-Lift	46								
	Ama-Drainer-Box Mini	46								
	Ama-Drainer-Box	46								
	Evamatic-Box N	46								
Lifting units / pump stations	mini-Compacta	46								
· · ·	Compacta	46								
	CK 800 Pump Station	47								
	CK 1000 Pump Station	47								
	Ama-Porter CK Pump Station	47								
	SRP	47								
	Amarex N	48								
	Amarex N S 32	48								
Submersible motor pumps	Amarex KRT	48								
	Amarex KRT (jacket cooling)	48								
	Amarex KRT (convection cooling)	48								
	Amacan K	49								
Submersible pumps in discharge tubes	Amacan P	49								
5	Amacan S	49								

						t t				t
				σ	u	Water Transport and Treatment		Ę		Solids Transport
				ry- nate	nati Ible	r Tra reati	tr	ly ersio	ng	Tra
Design / Application	Type series	Page	ErP	Factory- automated	Automation available	Vate nd T	Industry	Energy Conversion	Building Services	olids
		Page	ш	ш° ю	o ⊅			ш О	e v	Ś
	Amamix	50								
Mixers / agitators / tank cleaning units	Amaprop	50					_			
	Amajet	50					_			
	Amaline	50			_		_			
Duran e fan ee lide le dan fluide	Sewatec	51			-		_			
Pumps for solids-laden fluids	Sewabloc	51			_		-			_
	KWP / KWP-Bloc	51				_	_	-		
	WBC LSA-S	52								
		52						1.		_
	LCC-M						_			
	LCC-R	52						-		
	TBC	52								
<u></u>	LCV	53						_		
Slurry pumps	FGD	53								
	Mega	53								
	MHD	53								
	LHD	53								
	MDX	53								
	ZW	54								
	HVF	54								
	Etaprime L	55								
	Etaprime B	55								
Self-priming pumps	EZ B/L	55								
	AU	55								
	AU Monobloc	55								
	UPAchrom 100 CC	56								
	UPAchrom 100 CN	56								
Submersible borehole pumps	UPA 150C	56								
submersible borenole pumps	UPA 200, 200B, 250C	56								
	UPA 300, 350	56								
	UPZ, BSX-BSF	57								
Deep-well turbine pumps	BEV	57								
	Comeo	58								
	Movitec H(S)I	58								
High-pressure pumps	Movitec	58								
	Movitec VCI	58								
	Multitec	58								
	Omega	59								
Axially split pumps	RDLO	59								
	RDLP	59						-		
	Vitachrom	59								
	Vitacast	60						-		
Hygienic pumps for the food, beverage and	Vitaprime	60								
pharmaceutical industries	Vitastage	60			-		-			
	Vitalobe	60			-		-	-		
	CHTA / CHTC / CHTD	61			-					
	HGB / HGC / HGD	61						10		
	HGM	61						1.1		
	YNK	61			-			17		
		61						12		
Pumps for power station conventional islands	LUV / LUVA									
	WKTB	62								
	SEZ / SEZT / PHZ / PNZ	62					_	_		
	SNW / PNW	62					_	_		
	Beveron	62					_	_		
	SPY	62								

Design / Application	Type series	Page	ErP	Factory- automated	Automation available	Water Transport and Treatment	Industry	Energy Conversion	Building Services	Solids Transport
	RER	63								
	RSR	63								
	RUV	63								
	PSR	63								
	RHD	63								
Pumps for nuclear power stations	LUV Nuclear	64								
	RHM	64								
	RVM	64								
	RHR	64								
	RVR	64								
Pumps for desalination by reverse osmosis	Multitec-RO	65								
Positive displacement pumps	RC / RCV	65								
Fine finitetine meteres	EDS	65								
Fire-fighting systems	DU / EU	65								

Automation and drives

Design / Application	Type series	Page	ErP	Water Transport and Treatment	Industry	Energy Conversion	Building Services	Solids Transport
Automation and drives	KSB SuPremE	27						
Automation and drives	KSB UMA-S	27						
	Controlmatic E	66						
	Controlmatic E.2	66						
Control white	Cervomatic EDP.2	66						
Control units	LevelControl Basic 2	66						
	UPA Control	66						
	Hyatronic N	67						
Variable speed system	PumpDrive 2 / PumpDrive 2 Eco	27						
Monitoring and diagnosis	PumpMeter	27						
	Amacontrol	67						
Control system	BOA-Systronic	67						

Waste water with faces 0 <t< th=""><th>Calio-Therm S NC/NCV Rio-Therm S NC/NCV Calio-Therm NC Calio-Therm N Calio-Therm S Calio S Calio S Calio S Calio S Calio S Sio-Eco N Bio-Eco N Bio-Eco T N</th><th>Etaline L Etaline L Etaline DL Etaline-R Etaline-R ILN / ILNE / ILNS ILNC / ILNCE / ILNCS Megaline Etanorm-R Etanorm-R Etachrom L Etachrom L Etachrom L Etachrom L Etachrom N Megabloc</th></t<>	Calio-Therm S NC/NCV Rio-Therm S NC/NCV Calio-Therm NC Calio-Therm N Calio-Therm S Calio S Calio S Calio S Calio S Calio S Sio-Eco N Bio-Eco N Bio-Eco T N	Etaline L Etaline L Etaline DL Etaline-R Etaline-R ILN / ILNE / ILNS ILNC / ILNCE / ILNCS Megaline Etanorm-R Etanorm-R Etachrom L Etachrom L Etachrom L Etachrom L Etachrom N Megabloc
River, lake and groundwater Image: Stress of the stres	Waste water with faeces 😨 🛛 😨 🖉	8
River, lake and groundwater Image: State of the st	Waste water without faeces	
Intrinducting liquids Image: State of the state of	Aggressive liquids	
Intrinducting liquids Image: State of the state of	Inorganic liquids 🖉 🧧 🚊	
Intrinducting liquids Image: State of the state of	Activated sludge 😰 🔤 📴	
River, lake and groundwater Image: State of the st	Brackish water 🚼 🛛 🖓 🖓	
River, lake and groundwater Image: State of the st	Service water $\frac{1}{2}$ \blacksquare \blacksquare $\frac{1}{2}$ \blacksquare \blacksquare \blacksquare $\frac{1}{2}$	
River, lake and groundwater Image: State of the st	Distillate Distillate	
Intrinducting liquids Image: State of the state of	Slurries 👸 🔤 🖌 🖌	
River, lake and groundwater Image: constraint of the second s	Explosive liquids	
River, lake and groundwater Image: constraint of the second s	Digested sludge 두 하 하 하 하 하 하 하 하 하 하 하 하 하 하 하 하 하 하	
River, lake and groundwater Image: State of the st	Solids (ore, sand, gravel, ash) 🗧 📃 💆	
River, lake and groundwater Image: Constraint of the second s		
Food and beverage production	River, lake and groundwater	
Gas-containing liquids Image: Containing liquids Image: Co		
Filtered water Image: Solution of the second of the se		
Harmful liquids Image: Solution of the solution		
Toxic liquids Image: constraint of the second of the s		
High-temperature hot water Image: Sive liquids Image: Sive l		
Heating water Image: Solution of the solution of		
Highly aggressive liquids Industrial service water Image: Service water		
Industrial service water Image: Service water		
Condensate Image: Co		
Corrosive liquids Image: Corrosive liquids Valuable liquids Image: Corrosive liquids Fuels Image: Corrosive liquids Fuels Image: Corrosive liquids Coolants Image: Corrosive liquids Cooling water Image: Corrosive liquids Volatile liquids Image: Corrosive liquids Fire-fighting water Image: Corrosive liquids Solvents Image: Corrosive liquids Organic liquids Image: Corrosive liquids Pharmaceutical fluids Image: Corrosive liquids Pharmaceutical fluids Image: Corrosive liquids Image: Corrosive liquids I		
Valuable liquids Image: Second se		
Fuels Image: Coolants Image: Coo		
Coolants Coolants <td< td=""><td></td><td></td></td<>		
Cooling lubricant Image: Cooling water Cooling water Image: Cooling water Volatile liquids Fire-fighting water Solvents Solvents Oils Organic liquids Pharmaceutical fluids		
Cooling water Image:		
Volatile liquids Image: Constraint of the constraint of		
Fire-fighting water Solvents Solvents Solvents Oils Solvents Organic liquids Solvents Pharmaceutical fluids Solvents		
Solvents Solvents <td< td=""><td></td><td></td></td<>		
Seawater Image: Constraint of the cons		
Oils Image: Constraint of the second sec		
Organic liquids Image: Constraint of the second s		
Pharmaceutical fluids		
	Polymerising liquids	
Rainwater / stormwater		
Cleaning agents		
Raw sludge		
Lubricants		
Waste water		
Swimming pool water Image: Control of the second seco		
Brine	Brine	
Feed water I <thi< th=""> I <thi< th=""> <thi< <="" td=""><td>Feed water</td><td></td></thi<></thi<></thi<>	Feed water	
Dipping paints		
Drinking water n	Drinking water	
Thermal oil Therma	Thermal oil	
Hot water Image: A marked ma		
Wash water Wash wat	Wash water	

	НРК-1	НАН	НРК	Etracian CVT / BCV	Etanloriii 311 / N31 Et⇒hlor SVT	Etaline SYT		MegaCPK	CPKN		Magnochem	Magnochem-Bloc	Etaseco / Etaseco-l	Etaseco RVP		RPH	RPHb	RPHmdn	CTN	CHTR	CINCP / CINCN	INVCP / INVCN	RWCP / RWCN	WKTR								
Waste water with faeces	bs			ps			sa			bs					ps																	
Waste water without faeces	Hot water pumps			sdund			E E			Seal-less pumps					Process pumps																	
Aggressive liquids	d La			oilp					_	ss p					ss p																	
Inorganic liquids	vati						j.			- e	•				oce														\perp			
Activated sludge	s_			thermal			hei			Sea										_						\rightarrow	\perp	\perp	\perp	\vdash		_
Brackish water	Ĭ			t,		_	- Da		_	_						-			_	_					\rightarrow	\rightarrow	\downarrow	\perp	\perp	\vdash		_
Service water				er /			dis		_	_	•			•	-				-	_						\rightarrow	+	+	+	\vdash		
Distillate				vat	_	_	dar			<u> </u>	•			-	-	_	\rightarrow	_	_	_	_				_	\rightarrow	+	+	+	╞		<u> </u>
Slurries			$\mid \mid$	Hot water	+	_	Standardised chemical pumps	-	-					_	-	_	_	_	+	_	-	-	-		+	\rightarrow	-	+	+	\vdash	$\left - \right $	<u> </u>
Explosive liquids			$\mid \mid$	-	_	_		-		4	-				-				-		-	-	-		-	+	+	+	+	\vdash		<u> </u>
Digested sludge Solids (ore, sand, gravel, ash)		+-	$\left - \right $		+	+	-	-	+	-		\square		_	-	+	-	_	+		-	-	-	-	+	+	+	+	+	+	$\left - \right $	-
Flammable liquids				-	-	_	-	-	-	_	F	_		_	-	_	_		_					_	+	+	+	+	+	+		-
River, lake and groundwater	-	-		-	_	+	-	-		-	-			_	ŀ					-	-	-	-		\rightarrow	+	+	+	+	┢	\vdash	-
Liquefied gas	┤┝	+-		-	+	+	-	⊢	+-	-	⊢			_	ŀ	+	+				-	-	-		\rightarrow	+	+	+	+	+	$\left \right $	-
Food and beverage production	┤┝	+		ŀ	+	+	-		+-	-					ŀ	+	+	+-		+-	-			-	\rightarrow	+	+	+	+	+-		-
Gas-containing liquids		-			-	+	-			-					-	-	-	-	+-	-	-				+	+	+	+	+	+		
Filtered water					+	+		F	+-		F				ŀ		+								+	+	+	+	+	+		
Harmful liquids		+			+	+									ŀ						1					+	+	+	+	1		
Toxic liquids															Ē											+	+	+	+	1		
High-temperature hot water															Ē											Ť	Ť		Ť			_
Heating water																																
Highly aggressive liquids				1						_										I												
Industrial service water																										\downarrow	\perp	\perp	\perp	\perp		
Condensate	┤			-		_	_		_	_	⊢				-					_						+	+	+	+	\vdash		<u> </u>
Corrosive liquids		-		-	_	_	-	-	_		•			_	-	-	_				•				_	\rightarrow	+	+	+	+		<u> </u>
Valuable liquids		-		-	+	_	-	ŀ	_		H			-	- F	-					-			_	+	+	+	+	+	+		-
Coolants		+		-		+-	-	P		-	H				ŀ	┛	-			-	-				\rightarrow	+	+	+	+	+	\square	-
Cooling lubricant	{ -	+			╞	+	-		┼─	-	⊢	-	-	-	ŀ	\rightarrow	+	+	+-	-	-	-			+	+	+	+	+	+		-
Cooling water					╈	+									ŀ					-					+	+	+	+	+	+		_
Volatile liquids	1 -	-			╞	-							-		-	-	_				-	-			+	+	+	+	+	+		
Fire-fighting water	1 -				╞										Ē				+							+	+	+	+	\uparrow		
Solvents														-	Ī														T			
Seawater] [
Oils				1					_	_																						
Organic liquids		I												•												\downarrow	\perp	\perp	\perp	\perp		_
Pharmaceutical fluids										_					-	_			_	_						\rightarrow	+	+	+	+		
Polymerising liquids Rainwater / stormwater		-	\vdash		_	_	-	-			•			_	-	-	\rightarrow	-		_	-	<u> </u>	-		\rightarrow	\rightarrow	+	+	+	\vdash	$\left - \right $	-
					_	_	-		+-	_			_	_	-	_	_				-	_	_		_	+	+	+	+	+-		<u> </u>
Cleaning agents Raw sludge	$\{ \ \}$		$\left - \right $	H	╇	+	-	H		4	⊢	•		-	-		-		-		-			\vdash	+	+	+	+	+	+-	$\left - \right $	-
Lubricants		+		-	+	+	-			-	Ŀ			-	ŀ		_				-				+	+	+	+	+	+-	$\left - \right $	-
Waste water		+			+	+					⊢				-	-	-		•	+	-			\vdash	+	+	+	+	+	+	$\mid \mid$	_
Swimming pool water		+	\vdash		+	+			┢			\square			-	+	+	+	+	+	-			\vdash	+	+	+	+	+	+	-	
Brine						1										+	+		\uparrow	1					\uparrow	+	+	+	+	1		_
Feed water									Ť							Ť										\neg	\uparrow	\uparrow	1	1	\square	
Dipping paints																																
Drinking water																																
Thermal oil		1			_																											
Hot water														•														\perp	\perp	\perp		
Wash water																																

Fluids handled

		Hya-kain / Hya-kain N	Hya-Rain Eco	Emooria CP	Emporia MB	Emporia PD	Multi Eco	Multi Eco-Pro	Multi Eco-Top	Movitec VME	Ixo N	Ixo Pro	Filtra N	VCB Dalta Camana	KSB Delta Compact	Hya-Solo EV Hva-Solo D	Hya-Solo DSV	Hya-Solo D FL	Hya-Duo D FL	Hya-Solo D FL Compact	Hya-Duo D FL Compact	Surpress Eco SE.2.B	Hya-Eco VP	Hyamat K	Hyamat V	Hyamat SVP						
Waste water with faeces	ns			s										ns																		
Waste water without faeces	ster			sdund										ster																		
Aggressive liquids	3 s													Ś														\square				
Inorganic liquids	Rainwater harvesting systems			bood									_	booster systems														\square	\square	\perp	\perp	_
Activated sludge	.ves				_								_					<u> </u>									$ \rightarrow$	\square	\rightarrow	\downarrow	\downarrow	_
Brackish water	har	_		티 _ 3	_		_					_		e –	_			_						_	_			\vdash	\rightarrow	\downarrow	+	
Service water	ter		•									•	_	Pressure	_		_	_										\vdash		+	+	_
Distillate	Wu	_	_	- t	_	-	_	_				\rightarrow		<u>ب</u>	_		-	<u> </u>						_	_		\rightarrow	\vdash	\rightarrow	+	+	+
Slurries	Rair	_	_	<u> </u>	+							_	_	-	+		-		<u> </u>						_	_	\rightarrow	\vdash	\rightarrow	+	+	
Explosive liquids	-	_		<u>e</u> –	-	-		-				_	_	┝	-		-	-						_	_	_	_	\vdash		+	+	+
Digested sludge Solids (ore, sand, gravel, ash)	-	+	-	automatic control unit / Swimming	+	\vdash	-	-	\vdash	\vdash	\vdash	+	-	-	+	_	\vdash	-	-			_		_	_	-	\neg	\vdash	+	+	+	+
Flammable liquids	-	-	-	<u> </u>	+	-	-	-				-		┝	+		+	-	-							\rightarrow	\rightarrow	\vdash	\rightarrow	+	+	+
River, lake and groundwater	-	-		mai	+-	-	-	-				\rightarrow	-	┢	+	-	\vdash	-	-			_				-	-		\rightarrow	+	+	+-
Liquefied gas	-	-	-	10 12	+-	+	-	-				-		F	+	-	+	-	-								\rightarrow		\rightarrow	+	+	+-
Food and beverage production	-		—	– a	+	+		-				-		F	╈		+	-				_					-			+	+	+-
Gas-containing liquids	-	+		systems with	-	-	-						-		╈		1	-	-	-										+	+	+-
Filtered water				а С	1										+		\uparrow													+	+	+
Harmful liquids			-	/ste											+															+	+	+
Toxic liquids																																\top
High-temperature hot water				ddr																												
Heating water				er si																												
Highly aggressive liquids			-	Domestic water supply																								\square				
Industrial service water				2										1														\square		\perp	\perp	
Condensate				lest																								\square	$ \rightarrow$	\downarrow	\perp	_
Corrosive liquids	_	_	_		_								_											_			\rightarrow	\vdash	\rightarrow	\downarrow	+	_
Valuable liquids			_ '	┛┝	_									┝	_		_	_										\vdash		\perp	+	
Fuels	-	_	_		-	-		-				_	_	-	+		-	<u> </u>						_	_		\rightarrow	\vdash	\rightarrow	+	+	+
Coolants	-	_	_		_	-	-	_				_	_	┝	_		-	_						_	_		_	\vdash		+	+	+
Cooling lubricant Cooling water	-	-			-	-	-	-		_		_	_	┝	+		-	-						_			_	\vdash		+	+	+
Volatile liquids	-	-	-		+-	-	-	-		•		\rightarrow	-	┝	+		\vdash	-	-			_		_	_	-	\rightarrow	\vdash	\rightarrow	+	+	+-
Fire-fighting water	-	-	_		+	-	-	-				-	-	┝	+		-									-	\rightarrow	\vdash	\rightarrow	+	+	+-
Solvents	-	+			+	-	-	-		-			-	┢	+		+	-	-	-		_				\rightarrow	\rightarrow	\vdash	\rightarrow	+	+	+-
Seawater	-	-	-		-	-	-	-				-	-	-	+	-	-	-	-			_			_		-		-	+	+	+-
Oils	-				+	+		-						F	+		+	-								\neg	\neg		\rightarrow	+	+	+
Organic liquids					+	-								F	╈		\vdash	-				_							\rightarrow	+	+	+
Pharmaceutical fluids															+		1													+	+	+
Polymerising liquids					1												1													\uparrow	\uparrow	\top
Rainwater / stormwater																																\top
Cleaning agents																																
Raw sludge																																
Lubricants																												Щ				
Waste water											\square		_															\square	$ \rightarrow$	\perp	\perp	_
Swimming pool water								_			\square		•	Ŀ	• •													\square	\square	\perp	\perp	_
Brine		\square	_		_		_	_		Ц	\square	_						_										\vdash	\rightarrow	\downarrow	\downarrow	
Feed water		-	_		-	-	-	-	\square	Ц	\square	$ \rightarrow$	_		_	_	_	_								_	$ \rightarrow$	\vdash	\rightarrow	+	+	
Dipping paints		+	_		-							-	_				-	-	-			-		_	_	_	-	\vdash		+	+	_
Drinking water	-	+	_								\mid	\dashv	_	4				-	-					•	•		_	\vdash	\rightarrow	+	+	
Thermal oilHot water	-	+	_		-	-	-	-	$\left - \right $	\vdash	\vdash	+	_	-	+	_	-	-	-								-	\vdash	\rightarrow	+	+	
Hot water Wash water	-	+	_			-	-	-	\vdash	\vdash	\vdash	-	-	┣	+	_	-	-	\vdash			_					\neg	\vdash	+	+	+	+
vvash Water																																

	Surpress Eco SE.2.B VP	Surpresschrom SIC.2	Surpresschrom SIC.2 V	Surpresschrom SIC.2 SVP Surpressbloc SB	Surpress Feu SFE	Surpress SP	Surpress SP VP	Ama-Drainer N 301 – 358	Ama-Drainer 4. / 5.	Ama-Drainer 80, 100	Ama-Porter F / S	Rotex	MK / MKY		AmaDS ³	Kondensat-Lift	Ama-Drainer-Box Mini Ama-Drainer-Box	Evamatic-Box N	mini-Compacta	Compacta	CK 800 Pump Station	CK 1000 Pump Station	Ama-Porter CK Pump Station cRP		Amarex N	Amarex N S 32	Amarex KRT	Amarex KRT (jacket cooling)	Amarex KRT (convection cooling)	
Waste water with faeces	S										T			_																
Waste water without faeces		\square			+	\square	_	sdund						ion	-	+			-	-	-	-							-	
Aggressive liquids	syst				+			nd .		+-	+-			stat	_	+		+-			_	_				H		F†	-	+
Inorganic liquids	Pressure booster systems				+			ater	╈	+	1		_	du		+		+	-		_			motor		\square	H	\vdash	-	
Activated sludge	.soc				1		-	Ň	╈	+	1			und		\uparrow		+	1		_			Ē						+
Brackish water	a –				1			aste	+	+	1			ts /		+		+						Submersible		\square				+
Service water	sure	\square			1	\square		/ MS						iu		\uparrow						-		ersi						-
Distillate	res	\square			\top	\square		bs	1	1				ng l		+		+						- a		\square		\square	+	-
Slurries	-	\square				\square		nu	1		1			Lifting units / pump stations		\uparrow		1						SLI	[H			\neg	1
Explosive liquids		\square						Drainage pumps / waste water	1		Ĺ					\uparrow			1										\uparrow	1
 Digested sludge						\square		nag	Ť	1	Í					\uparrow		1							-					1
Solids (ore, sand, gravel, ash)								Irai			1			-				1			_					\square		\square	\neg	-
Flammable liquids		\square				Π			1		1															\square				-
River, lake and groundwater		\square				\square								-														ΓÌ		
Liquefied gas						\square																				\square				
Food and beverage production						Π			Ť																	П		Γİ		
Gas-containing liquids						\square								-																
Filtered water																										\square				
Harmful liquids		\square				П			Ť																	\square		ΓÌ		
Toxic liquids																										\square				
High-temperature hot water																										\square		\square		
Heating water											1			-		•										\square		\square		
Highly aggressive liquids																												\square		
Industrial service water									. •																					
Condensate									Т																					
Corrosive liquids																														
Valuable liquids																														
Fuels																														
Coolants																														
Cooling lubricant																														
Cooling water																														
Volatile liquids																														
Fire-fighting water																														
Solvents																														
Seawater			[Ш		
Oils																														
Organic liquids																												Ш		
Pharmaceutical fluids		\square																										\square	\square	
Polymerising liquids														_										_				\square		
Rainwater / stormwater																												Ц		
Cleaning agents																										\square		Ц	\square	
Raw sludge					_	\square				_								_				\square							\downarrow	
Lubricants		\square																										\square	\square	
Waste water																								<u> </u>						
Swimming pool water																												Ш	\perp	
Brine																												Ш		
Feed water		\square																										\square		
Dipping paints																		_										Щ	\square	
Drinking water	•																	_								\square		Ц		
Thermal oil			_		_	\square				_								_								\square		Ц	\downarrow	
Hot water		\square	_		_	\square			_	_	_							-	_						-	\square	\square	\square		
Wash water																														

	Amacan K	Amacan P	Amacan S		Amamix	Amaprop Amaiet	Amajet Amaline		Sewatec	Sewabloc	NWE / NWE-BIOC			ICC-M	LCC-R	TBC		Mega	DHM	LHD	MDX	ZW	HVF		Etaprime L	Etaprime B		AU Monobloc		
Waste water with faeces	es							с S				sd												bs						
Waste water without faeces	tcb			Б	•			fii				5											_	m				_	+	
Aggressive liquids	rge			ling				len		1		≥_	_						_		_		_	<u>j</u>						
Inorganic liquids	cha	_	-	lear		_	_	- <u>lac</u>				Slurry pumps	_	_	$\left \right $	_		_	_				_	Self-priming pumps	\rightarrow	_	_	+	$\left \right $	
Activated sludge	disc		-	N N N	_	_	_	lids	┛		-	-	_	+-	\vdash			_	_				_	-pri	_	_	_	+	$\left \right $	
Brackish water Service water	s in			tan	_	_		- so				-	+	+-	\vdash	_	_	_	_		_		_	Self	_				$\left \right $	
Distillate			-	rs/				s fo					+	+-	$\left \right $	_	_	+	-		_		_	ŀ	-		+	+	$\left \right $	
Slurries	nd a		+	tatc	+	+	+	Pumps for solids-laden fluids	\vdash														-		+	+	+	+-	+	
Explosive liquids	ible	+	+	agi	+	+	+	- P	H		-	ŀ		- =		-			-		-	-	-		+	+	+	+	+	
Digested sludge	Submersible pumps in discharge tubes	+	-	Mixers / agitators / tank cleaning	+	+	-						+	1	\vdash	\dashv	-+	-	+						+	+	+	+	+	
Solids (ore, sand, gravel, ash)	q			lixe																			-				+	+		
Flammable liquids	N -			2											\square									ľ				T		
River, lake and groundwater																														
Liquefied gas																														
Food and beverage production								_															_					_		
Gas-containing liquids								_																-		\perp	\perp	\perp		
Filtered water								_						_									_	-	\rightarrow	_	<u> </u>	+		
Harmful liquids	-	_	-	┤╴┝		_	_	-		-+	_		_	_	$\left \right $	\rightarrow	_	_	_		_		_	-	\rightarrow	_	_	+	$\left \right $	
Toxic liquids	-	_		┤╴┝	_	_	_	-		-+	-	-	_	+-	$\left \cdot \right $		_	_			_		_	-	\rightarrow	-+	_	+	$\left \right $	
High-temperature hot water Heating water	-	_	+		_	_	_	-	\vdash	+	-	-	+	+-	\vdash	-	-+	+	-		_	_	_		\rightarrow	+	+	+	$\left \right $	
Highly aggressive liquids	-	+-	+			+	+	-		+	-		+	+	$\left \right $	\rightarrow	-+	+	-		_		-	ŀ	\rightarrow		+	+-	+	
Industrial service water													+	+	\vdash		-	+	-		_		-	ŀ	\rightarrow	+	+	+	+	
Condensate			-										+	+	\vdash						_			ŀ			+	┼		_
Corrosive liquids		+	1										+											ŀ	+	+	+	+		
Valuable liquids															\square													1	\square	
Fuels																								Ĩ						
Coolants																														
Cooling lubricant																														
Cooling water								_															_							
Volatile liquids		_					_							_	\square				_						$ \downarrow$	\downarrow	\downarrow	+		
Fire-fighting water			_					-			_		+	_	$\left \right $	-		_	-	\square					•	-				
Solvents Seawater	-	_	-		+	+	_	-	\vdash	-+	_	-	+	+-	$\left \cdot \right $	\dashv	_	_	+-	\vdash	_		_		_	_+	+	+-	$\left \right $	
Seawater Oils	-	+-	-		+	+		-	$\left - \right $	-+	-	-	+	+-	$\left \cdot \right $	\dashv	-+	_	+-				_	- H	-				+	+
Organic liquids			-		+	+		-	\vdash	+	-	-	+	+	\vdash	+	-+	-	+-	\vdash	_		-		-		+	+-	+	
Pharmaceutical fluids		+	+		+	+	+	-	H	+	-	-	+	+	\vdash	\dashv	+	+	+		_				+	+	+	+	+	
Polymerising liquids		+	+		+	+	+			+		┢	+	+	$\uparrow \uparrow$	+	+	+	-						+	+	+	+	+	
Rainwater / stormwater					\uparrow								╈	1	$\uparrow \uparrow$	\neg	\uparrow			\square					+	+	+	+		
Cleaning agents																														
Raw sludge																														
Lubricants															\square												Ļ			
Waste water																			·								1			\square
Swimming pool water		_	_		_		_							_		$ \downarrow$			_								\downarrow	+		
Brine							_	-			-		+	_	$\left \right $	-		_	-	\square			_		•		+	+	$\left \right $	
Feed water		_	-		+	+	_	-	\vdash	-	_	-	+	-	$\left \cdot \right $	-	_	_	-	\square			_		\dashv	-	4	+	$\left \right $	-+
Dipping paints Drinking water					+	+	_	-	\vdash		-	┢	+	-	$\left \right $	-	_	-	-	\square			_				+	+	$\left \right $	+
Drinking water Thermal oil			-		+	+	+	-	\vdash	+	-	-	+	+-	$\left \right $	\dashv	+	-	-	\vdash	_		_		-		+	+	+	
		_	-			+		-1			-		_	_	+	-+	-+	_	+	-			_	-	\rightarrow	+	+-	+-	+	
Hot water										- L I	- 1																			

	IIPAchrom 100 CC	UPAchrom 100 CN	UPA 150 C	UPA 200, 200B, 250C			BEV		Comeo Moviter H/CN	Movitec	Movitec VCI	Multitec	Omega	RDLO	RDLP		Vitachrom	Vitacast	Vitastage	Vitalobe	СНТА / СНТС / СНТD	HGB / HGC / HGD	MGH	YNK	LUV / LUVA	VVKIB SEZ / SEZT / PHZ / PNZ	SNW / PNW	Beveron	SPY
Waste water with faeces	sdi					sai		sdi					sd			ies					lds			\square					
Waste water without faeces	- unc				_			sdwnd		_	_		m_			ustr			_		islands		-			_			
Aggressive liquids	borehole pumps	_			_	Deep-well turbine pumps	-	Le L		_	-		Axially split pumps	_		industries	\vdash		_			-	-	$\left - \right $		_	_	_	⊢
Inorganic liquids	ehc	_			+	- iai	⊢	High-pressure		+-			V sp	-		cal	-+	_	+-	┼┤.	station conventional	+	-	$\left - \right $	_	+	-	-	┝
Activated sludge Brackish water	bor	-			+	- E	Ŀ	-pre		+-	-	_	liall.			pharmaceutical	-	_	+-		.uen	+	+	\vdash	\rightarrow	+	-	-	┝
Service water	Submersible					- A		igh		-	-	-	Axi			Jace	\vdash	_	+-		no -	+	+	\vdash					
Distillate	ersi	-	-		-	- de	F	T					H			arn	\vdash		+		- uo	+	+	\vdash		+-	-	-	-
Slurries	, p	-			┢	- ŏ					-	-		+	+-	hd	\vdash		+-		tati	+	┼─		+	+	+-	-	-
Explosive liquids	Su	-								+				+	+	and			+			+	+	\vdash	+	+	+	\vdash	-
Digested sludge		1	\square							\uparrow	1			1	1	ge		+	+		power	1	1		\uparrow	+	1		
Solids (ore, sand, gravel, ash)																beverage													
Flammable liquids																be				Ľ	Pumps for								
River, lake and groundwater																food,					Ĕ.								
Liquefied gas																e fo					ه _			\square					L
Food and beverage production						_									_	for the t							_	\square		_	_		L
Gas-containing liquids	-	_			_	_	-			_	-			_	_	s foi		_	_		_	+	-	\square		_	_	-	┝
Filtered water	-	_			_	-	⊢			_		-	-	_		du	\vdash					-	-	$\left - \right $	-+	+	-	-	⊢
Harmful liquids Toxic liquids	{ }-	+			+	-	⊢			+-	-		-	+	+	bn	-+	_	+-	$\left - \right $		┢	+	$\left - \right $	+	+	+	┝	┝
High-temperature hot water	┥ ┝─	-				-	⊢				-				-	enic	\vdash	_	+							+	+	┢	-
Heating water		-			┢						+	-				Hygienic pumps	\vdash		+-			1	+-		-	+	+-	-	
Highly aggressive liquids					╈					+	1	_	F		+	T			+				1			+			
Industrial service water																								\square					
Condensate																									1				
Corrosive liquids						_																							
Valuable liquids		_																						\square					L
Fuels		_				_									_	-													L
Coolants	-	_			+	_	-			_				_	_	-	-		_			-	-	$\left - \right $		_	_	_	⊢
Cooling lubricant Cooling water			_			_	-					-				-			-		-	-	-	\square				_	
Volatile liquids					+	-					-	-					\vdash	_	-			-	+	\vdash					┝╸
Fire-fighting water	1 -	-				-											$\left - \right $		+-			+	+	\vdash		+	-	-	-
Solvents		-	-		-		F				+-	-	F				\vdash		+-			+	+		-	+	-		-
Seawater																							\vdash						
Oils	1							1				-																	
Organic liquids																													
Pharmaceutical fluids																													
Polymerising liquids		_			_	_	_			_				_	_		$ \downarrow $		_	$\left - \right $		-	-	\vdash			-	_	L
Rainwater / stormwater		_			+	-	-			_	-			-	_	-	\vdash		-	$\left - \right $		+	-	$\left \right $		-			⊢
Cleaning agents Raw sludge		_	\square	\vdash	-	-	-			+	-			_		-	\vdash			$\left - \right $	-	-	-	$\left - \right $	-+	+	+	-	┝
Lubricants		+	\square	\vdash	╈	-	-		\vdash	+				+	+		┝─┼		+	$\left - \right $		+	+	\vdash	+	+	+	-	-
Waste water		+			+					+	+-	-		+	+		\vdash	+	+	$\left - \right $		+	+		+	+	+		-
Swimming pool water		-	\square		┢					+	\vdash			+	1				-	\vdash		┢			+	+	+	1	
Brine		1			+					+									1			1	1				1	1	
Feed water																													
Dipping paints																				\square				\square					L
Drinking water						<u> </u>			•									•					_	\square			_		L
Thermal oil		-			_	_	L			_					_		\square		-	$\left \right $		-	-	\square		_	-	-	L
Hot water			\square		-	-	-			-	-	-			-		-		-	$\left - \right $	-	-	-	$\left - \right $		+	+	-	┝
Wash water			1		1										1				1	1 1		1	1	r I		1	1	1	1

	RFR	RSR	RUV	PSR	RHD	LUV Nuclear	RHM	RVM	KHK DV/D		Multitec-RO		RC / RCV		EDS	DU / EU	1	KSB UMA-S		PumpMeter										
Waste water with faeces	_	Τ									2	S				-									Т	Τ		Τ	Τ	\square
Waste water without faeces	power stations											samua		Fire-fighting systems				•	Monitoring and diagnosis											
Aggressive liquids	sta									100	5	tpl		sys					liag											
Inorganic liquids	ver									Prop		displacement		ting					pp											
Activated sludge	bod											cen		ight					g ar											
Brackish water	ear									Ì	<u>-</u>	spla		e-f					rin									_		
Service water										2	5	di di		Ē				-	jto									\perp		
Distillate	or -		_						_	- te u	ē —	Positive	_			_		-	Mo				_		_	_		+	_	<u> </u>
Slurries	ps f		-				_	\rightarrow	_	- les		Pos	_	-	\vdash	_							_	_	_	+	$\left \right $	+	+	-
Explosive liquids Digested sludge	Pumps for nuclear	+	-	$\left \right $			-	+	+	Pumos for desalination by reverse osmosis	5-	-	-		\vdash	_	- F					$\left \right $	\rightarrow	_	+	-	$\left \right $	+	+	-
Solids (ore, sand, gravel, ash)	•-	+	-	$\left - \right $			+	+	+	_ ÷		-	-		\vdash	-					_	+	+	+	+	-	$\left \right $	+	+	-
Flammable liquids	-	+	-	$\left - \right $			+	+	+		2		-		\vdash						_	+	+		+	+	$\left \right $	+	+-	-
River, lake and groundwater		+-	-					+	+	-					\vdash										+-	+	\vdash	+	+-	-
Liquefied gas		+	-						+						\vdash					-					+	+		+	+	-
Food and beverage production		+	+																						+	┼╴		+	+	
Gas-containing liquids																												+	1	
Filtered water																		-											1	
Harmful liquids			1																											
Toxic liquids																														
High-temperature hot water										_							_													
Heating water		_						_		_		4			\square								_		_	_		\perp	_	<u> </u>
Highly aggressive liquids			_			_				_		-													_	_		+	_	L
Industrial service water		_	-			_			_	_		-			\vdash	_							_		_	_	$\left \right $	+	_	-
Condensate	-		-				_	_	_	_		-		-	\vdash	_	- H						_		_	_		+	_	<u> </u>
Corrosive liquids Valuable liquids	-	+-	-			_	-	-		-		-			\vdash	_				_			\rightarrow	_	+-	+	$\left \right $	+	+-	
Fuels	-	-	-					+	-	-		-		-	\vdash										-	-		+	+	-
Coolants												-	F		\vdash								\rightarrow		+-	+	$\left \right $	+	+-	-
Cooling lubricant			-	-		-	-	-		-					\vdash							+			+	+	+	+	+-	-
Cooling water		+	+														F								+	+		+	+	-
Volatile liquids		+							_	-										_					+	+		+	+	<u> </u>
Fire-fighting water																												+	+	
Solvents												1																T	Ť	
Seawater																														
Oils															\square															
Organic liquids		_	_				_	\downarrow	_						\vdash									_	_	_		+	\vdash	<u> </u>
Pharmaceutical fluids		-	_				-	\downarrow	_		-				\vdash		-	_					\downarrow		_	_		+	+	<u> </u>
Polymerising liquids	_	+	-			_	-	+	+	-[]	-	-	-		\vdash	_					_	+	\rightarrow	_	-	-	$\left \right $	+	+	
Rainwater / stormwater Cleaning agents	-	+	-	$\left \right $		_	+	+	+	-	┣	-	-		\vdash	_						$\left \right $	+	_	+	-	$\left \right $	+		
Cleaning agents Raw sludge	-	+	-	$\left - \right $		_	+	+	+	-	-	-	-		\vdash	-					_	+	\rightarrow	_	+	+	$\left \cdot \right $	+	+	
Lubricants		+-	-	\vdash	\dashv		+	+	+	-					\vdash						_	+	+	+	+	-	++	+	+	-
Waste water		+	-	$\left \right $			-	+			-		⊢		\vdash						_	+	+		+	+	+	+	+	-
Swimming pool water		+	-				+	+	+						\vdash		-					+	+	\neg	+	+	\vdash	+	+-	1
Brine		+	+				+	+	+								ŀ			_			+	+	+	1		+	+	-
 Feed water		\uparrow		\square				•	\uparrow													$\uparrow \uparrow$	\uparrow		┢	1	$\uparrow \uparrow$	+	1	\square
Dipping paints																														
Drinking water																														
Thermal oil									Ţ						Ц															
Hot water		_													\square								\downarrow			_	\square	\perp	\perp	<u> </u>
Wash water																														

	Calio-Therm S NC/NCV	Rio-Therm N	Calio-Therm NC		Rio-Eco Therm N	Calio-Therm	Calio-Therm S		Calio S	Calio	Rio-Eco N Rio-Ero 7 N		Etaline L	Etaline DL	Etaline	Etaline Z	Etaline-R	ILN / ILNE / ILNS	ILNC / ILNCE / ILNCS Megaline		Etanorm	Etanorm-R	Etabloc	Etachrom B	Etachrom L	Etanorm V	Meganorm	Megabloc				
Aquaculture	ed			bed				ed				, vi	<u>s</u>							sar										\square		\Box
Spray irrigation Mining	fixed speed	+	\vdash	variable speed	_	\rightarrow	_	Circulators, variable speed		+	-		-	+	+	\vdash				samna	-		•	-	-	_		-	+	+	+	-
Irrigation	fixeo	+	┢	iable				iable				-line		┢	┢	\vdash				oled									\neg	+	+	-
Chemical industry								var				4								close-coup												
Dock facilities	Drinking water circulators,	_	_	circulators,	_	_	_	tors,		\rightarrow	_	_		_	-	_				ose-	_	_	_	_	_		_	_	_	\rightarrow	+	_
Drainage Pressure boosting	circ	+	-	cula		-	-	cula		+	-		┢	+	-	\vdash			+	_		-	_	\neg			•	-	+	+	+	+
Sludge thickening	ater	+	┢					Ū					F	┢	┢	\vdash				Standardised									\neg	+	╧	+
Disposal	d N			water																dard												
Dewatering	ki	_	_	N BL	_		_							_	_	_				tan	•		-	•	•	•				\rightarrow	+	_
Descaling units District heating	Dri	+	-	Drinking	_	\rightarrow	_																_	-		_		_	+	+	+	+
Solids transport		-	-	D			-		-	-			F		-	-	-	-		-	F	-	-						-	+	+	-
Fire-fighting systems																																
Drawdown of groundwater levels																																
Maintaining groundwater levels		-	_		_	_	_			-	_	-	┝	+	-	-				-	-		_			_		_	-	+	+	_
Domestic water supply Flood control / coast protection					-	-	-			+			┢	┢	+	┢			_	-	⊢	-	_	\neg					+	+	+	+
Homogenisation		+	\vdash										F	\uparrow	\vdash	┢			+											+	╧	+
Industrial recirculation systems							•																-									
Nuclear power stations		_	_				_					_		_	_	_			_	_			_					_		\downarrow	+	
Boiler feed applications Boiler recirculation	- -				-	-	-		-	-		_	-	+	-	-			_	-	-		_	_	_	_			-	+	+	+
Waste water treatment plants		-	-		-	-	-		-	-			┢	┢	┢	┢													+	+	+	+
Air-conditioning systems							•														•											
Condensate transport																												•		\square		
Cooling circuits Paint shops	-		•			-	-			-	-					-			-	-	•		-	_	_				\rightarrow	+	+	-
Food and beverage industry		-	-			\neg	-			\dashv	-																-	-	+	+	+	-
Seawater desalination / reverse osmosis																														1	\pm	
Mixing																														\square		
Offshore platforms Paper and pulp industry	┤┟┝				_		_			_		-	-	+	-	-				-	_		_	_						+	+	
Petrochemical industry		+-	-				-			+		-	┢	┼	┝	┝			-	-		-	-	\rightarrow					+	+	+	-
Pharmaceutical industry		1	\vdash											┢	\uparrow	\square													1	+	+	1
Pipelines and tank farms																																
Refineries		-	-				_					_	┝	+	-	_			_	_	-		_						\rightarrow	+	+	+
Flue gas desulphurisation Rainwater harvesting	-	-	-	-	_	\neg	-			\dashv		-	┢	+	\vdash	-			-	-		-	_	\neg		_		_	+	+	+	+
Cleaning of stormwater tanks / storage sewers		+				+				\dashv	+			+	-	\vdash		\square	+		⊢			\dashv					+	+	+	+
Recirculation																																T
Dredging	-	-	-			-				_		_		-	-	_			_	-	-		_	$ \rightarrow$					-	\downarrow	+	+
Shipbuilding Sludge disposal		+	\vdash			\rightarrow	_			+	+	-		+	\vdash	\vdash				-	\vdash	-	_	\rightarrow		-		-	+	+	+	+
Sludge processing		+				+				\dashv	+			+	\vdash	\vdash		\square	+		⊢			\dashv					+	+	+	+
Snow-making systems																															\downarrow	T
Heavy oil and coal upgrading		-	-							_		_		-	-	_				_	-		_							\downarrow	+	_
Swimming pools Solar thermal energy systems		+	-			\dashv	_						-	+	+	\vdash	$\left - \right $			-	-		-	-	-	-		-	+	+	+	+
Fountains		+	-			\neg			-	-				+		-					⊢			\dashv					+	+	+	+
Keeping in suspension																																\square
Thermal oil circulation					_	_	_			_				+										_				_	_	\downarrow	+	+
Draining of pits, shafts, etc. Process engineering		+	-			\rightarrow	_			+	+	-		+	+	-	\square	-	-	-	-	-	_	\dashv				_	+	+	+	+
Heat recovery systems					•		•			-											\vdash			\dashv					+	+	+	+
Hot-water heating systems						-	•				•	_												•	•		•	-			\downarrow	\Box
Washing plants		_	-							_		_			_	_				_	_		_				•		-	\downarrow	+	_
Water treatment Water extraction	-	+	\vdash			\rightarrow	_			+	+	-		+	\vdash	\vdash	\square			-	÷		_	\rightarrow		-		-	+	+	+	+
Water extraction Water supply					•		•			\dashv	+	-									Ē	-							+	+	+	+
Sugar industry																																

		HPK-L	ИЛИ		Etanorm SYT / RSY	Etabloc SYT	Etaline SYT		MegaCPK	CPKN	Macnochem	Magnochem-Bloc	Etaseco / Etaseco-l	Etaseco RVP		КРН Крнь	RPH-V	RPHmdp	CTN	CHTR	CINCP / CINCN		RWCP / RWCN	WKTR								
Aquaculture	sd			SQ				sdi			sd				sd																	
Spray irrigation	m			samna				bumps			sdund				sdund																$ \rightarrow$	
Mining	erp			oila				al p		_	less p				ss p																$ \rightarrow$	
Irrigation	Hot water pumps			alc	<u></u>			Standardised chemical		_	<u>–</u>				Process																$ \rightarrow$	
Chemical industry	5			L L				ihei		-	Seal-I				Å			<u> </u>				┛							_		$ \rightarrow$	
Dock facilities	Ť		_	the	_	-		ed		_	_	_	-		-	_	_	_	_			\rightarrow	_	_			_	_	+-		\rightarrow	
Drainage	-			er /	-	-		rdis		_		_	-		-	_	_	_							+		_	_	-		\rightarrow	
Pressure boosting Sludge thickening	-		_	Hot water / thermal	-	-		Idai		_	⊢		-		-	_	+		-	•		+	_	_	_	_	_	_	+-		\rightarrow	
Disposal				ţ	:	-		Star		-		+-	+	$\left - \right $	-	+	+	+-	-			+		-	+		+	+-	+		\rightarrow	
Disposal				┤┸	-	-				-		+-	+	\vdash	-	+	+	+		_		-			+		+	+-	+		\rightarrow	
Descaling units			+							_	-	-	+	$\left \right $	-	+	╧	+-	-	_	-	-	-	-	+		+	+	+		\rightarrow	
District heating						1	\square									+	+	+	+			+	+	+	+	+	+	+	+	\vdash	+	—
Solids transport		Η.	+			1	\square		F	-	F	+	+-	H		+	+	+			\neg	+	+	\uparrow	\uparrow	+	\uparrow	\uparrow	1	\square	\neg	—
Fire-fighting systems			\top			1						1	1				+	1				\uparrow	\neg	╡	╡		╈	╈	1	Π	\uparrow	
Drawdown of groundwater levels													1	\square		Ť		1											1			
Maintaining groundwater levels																																
Domestic water supply																																
Flood control / coast protection (stormwater)																																
Homogenisation										_					-		_	_				\downarrow									\rightarrow	
Industrial recirculation systems	-			_	•					-					-			_	_					_			_	_	+		\rightarrow	
Nuclear power stations Boiler feed applications	-			-	-					_			-		-		-		-			+	-	-	+	_	+	-	+		\rightarrow	
Boiler recirculation				-		-				-	-	+	+	$\left \right $	-	+	╈	+	-	-		+	\rightarrow	-	+	_	+	+-	+		\rightarrow	
Waste water treatment plants						-				-		+-	+	$\left - \right $	-	+	┼	+-	-	_		+		\rightarrow	+		+	+-	+		\rightarrow	—
Air-conditioning systems			+			-						+			-	+	╈	+	-	_	-	+	-	+	+		+	+	+		\rightarrow	
Condensate transport																				_							+		+			_
Cooling circuits																																_
Paint shops																																_
Food and beverage industry						-			\rightarrow	•		_																			\square	
Seawater desalination / reverse osmosis										•			-		_		_	_				\downarrow		_					_		\rightarrow	
Mixing	-		_		-	-				_	-	_	-		-				-	_		+	_	_			_	_	+		\rightarrow	
Offshore platforms Paper and pulp industry	-		_	-	-	-				_	-	-	+		-				-		_	_	_		+		_	_	+		\rightarrow	
Petrochemical industry			-			-				-			+	$\left - \right $	-						-				-	_	+	-	+-		\rightarrow	—
Pharmaceutical industry	-		+			-						_		$\left \right $	-				-	-	-		-	-	+		+	+	+		\rightarrow	
Pipelines and tank farms			+									_	-	\square	-					•							+	+	+		\neg	_
Refineries												_							-		_						+		\uparrow			_
Flue gas desulphurisation													1	\square		Ť		1											1			_
Rainwater harvesting				1																												
Cleaning of stormwater tanks / storage sewers		-							Щ																						\square	
Recirculation	-		_		-				\vdash			_	-	\square		_		\vdash								_	_			\square	\rightarrow	
Dredging		\vdash	_	-	-	-	\square		$\left - \right $	_		-	-	\square	-	_	+	-	-		$ \rightarrow $		-		\parallel	_	+	-	-		\rightarrow	
Shipbuilding	-	\vdash	_	-	-	-	\vdash		\vdash	_		+-	-	$\left - \right $	-	+	+	+	-	_	-			+	+	+	+	+	-	$\left - \right $	\rightarrow	
Sludge disposal Sludge processing		\vdash	+	-	-	-	\vdash		\vdash	_		+	-	\vdash	-	+	+	+	\vdash		-	-		+	+	+	+	+	+	\vdash	\rightarrow	
Shudge processing Snow-making systems		\vdash	+	-	-	\vdash	\vdash		\vdash	_		+-	+	\vdash	-	+	+	+	\vdash	_	-	+	-	+	+	-	+	+	+	\vdash	+	
Heavy oil and coal upgrading		\vdash	+			1	\vdash						+	\vdash					\vdash		\neg	+	\neg	+	+	+	┼	┼	+	\vdash	+	—
Swimming pools		\vdash	+			\vdash	\square		F.			+	1	\square		+	┼	+		-		+	+	\uparrow	+		\uparrow	\uparrow	1	\square	+	
Solar thermal energy systems																																
Fountains																																
Keeping in suspension		\square			L				\square																					\square	\square	
Thermal oil circulation				4	-	-	$\left \right $		-	_		-	-	$\mid \mid$	-		-					-	-		-	_	_	-	-			
Draining of pits, shafts, etc.		╞			-		•			ļ		-	-	H	-			+-	-	_	_	_		_	+	+	+	+	+-	\square	\rightarrow	
Process engineering Heat recovery systems				4	-	\vdash	\vdash		⊢	•			-	-	-			•				-	-	-	+		+	+	+	$\left - \right $	+	
Hot-water heating systems						\vdash	\vdash									+	+	+	\vdash		+	+	+	\neg	+	+	+	+	+	\vdash	\rightarrow	
Washing plants		\vdash	+			1	\square		Ħ	-		+	Ē	Ħ		+	+	\uparrow	1	_				\uparrow	╉	+	\uparrow	+	+	Η	\neg	—
Water treatment																						-									$ \uparrow $	_
Water extraction																										Ţ						
Water supply									\square							_						-							_		$ \rightarrow$	
Sugar industry																																

		Hya-Rain / Hya-Rain N	Hya-Rain Eco		Emporia CP	Emporia MB	Emporia PD	Multi Eco	Multi Eco-Pro	Multi Eco-Top	Movitec VME	Ixo N	Ixo-Pro	Filtra N		KSB Delta Compact	Hya-Solo EV	Hya-Solo D	Hya-Solo DSV	Hya-Solo D FL	Hya-Duo D FL	Hya-Solo D FL Compact	Hya-Duo D FL Compact	Surpress Eco SE.2.B	Hva-Eco VP	Hyamat K	Hvamat V	Hyamat SVP					
Aquaculture Spray irrigation	sma			sdwnd				_							sma									_				_		_			<u> </u>
Spray imgation Mining	- 0	-						-	-		•	-	-		Pressure booster systems				•				-						╞	+	-	\vdash	-
Irrigation	ina	•		unit / Swimming pool										_	ter		•	•											┢				
Chemical industry	vest			ng p											2000																		
Dock facilities	har	_		nmi											ure b								_	_		-	-	-	-	_			
Drainage Pressure boosting	ater	-		Swir											essl.								-						\vdash	\vdash	-		<u> </u>
Sludge thickening	- Nu	-	-	lit/	\vdash			_	_	-	-			_	ę.	-	-	-	-	_			-	-	1	-		1	┢	+	-	\vdash	-
Disposal	Ra			olur																				\vdash		1	╞	╞	╞	┢			
Dewatering	_			ntro																													
Descaling units		-		automatic control		\square															\square			-		-	_	-	_	-			\vdash
District heating Solids transport	-	-	-	mati	\vdash	\vdash				$\left \right $	-	\vdash	\vdash	\vdash					-		\vdash		-	-	-	-	\vdash	+	\vdash	-	-	$\mid \mid$	-
Solids transport Fire-fighting systems	-	\vdash	-	utoi	\vdash	\vdash			\square			\vdash	\vdash	\vdash			\vdash	\vdash	-					-	\vdash	+	+	+	+	+	-	\vdash	-
Drawdown of groundwater levels				th a																													
Maintaining groundwater levels				systems with																													
Domestic water supply	_	-		tem				-	•														_						-	-			<u> </u>
Flood control / coast protection (stormwater) Homogenisation	-	\vdash	-	/ sys	-				_		-								_				-	\vdash	\vdash	+	┢	+	┢	+	-	\vdash	-
Industrial recirculation systems	_			supply																					\vdash	+	┢	+	┢	┢		\square	
Nuclear power stations	_			ir su																									T				
Boiler feed applications	-			vate																													
Boiler recirculation	-	_		Domestic water					_										_				_	-	_	-	-	+	╞	-	-		<u> </u>
Waste water treatment plants Air-conditioning systems	-	┝	-	mes					_														-	\vdash	\vdash	+	+	+	╞	+	-		-
Condensate transport	-			å					_							_			-	-				-	1	+	┢	┢	┢	\vdash	\vdash	\square	
Cooling circuits	-																																
Paint shops																																	
Food and beverage industry	-	⊢																						-			-	-	-	_			<u> </u>
Seawater desalination / reverse osmosis Mixing	_	\vdash	-		\vdash				_		-			—									-	\vdash	\vdash	╞	╞	╞	╞	\vdash	-	\vdash	-
Offshore platforms	-								_										-	-				\vdash		┼	┢	┼	┢	┢			
Paper and pulp industry																												L	Ĺ				
Petrochemical industry	-																																
Pharmaceutical industry	_	-							_														_	-	-	-	-	-	-	-			<u> </u>
Pipelines and tank farms Refineries	-	\vdash			\vdash				_										_				-	\vdash	\vdash	+	┢	+	┢	+	-	\vdash	-
Flue gas desulphurisation	_																								\vdash	-	┢	+	┢	╞		\square	
Rainwater harvesting																																	
Cleaning of stormwater tanks / storage sewers					Ц	Ц																										\square	
Recirculation Dredging	-	⊢	-		\vdash	\square		_			_	\square	\square	\square			\square	\square	<u> </u>	-	\square		-	-	-	+	-	+	-	-	-	\vdash	<u> </u>
Shipbuilding	-	-	-		\vdash	\vdash			\square	$\left \right $	-	\vdash	\vdash	\vdash			\vdash	\vdash	-	-	\vdash		-	-	\vdash	+	+	+	+	+	-	\vdash	-
Sludge disposal	-																					_											
Sludge processing	_																																
Snow-making systems		_			\vdash	\square															\square		_	_	_	\vdash	-	-	-	_	_	\square	<u> </u>
Heavy oil and coal upgrading Swimming pools	_	-	-		\vdash	\mid			\square														-	-	\vdash	+	+	+	+	\vdash	-	\square	-
Solar thermal energy systems		-	-		\vdash	\vdash				\vdash		\vdash	\vdash				\square		-	\vdash	\vdash		-	-	-	+	\vdash	+	\vdash	-	-	\vdash	-
Fountains	-																					_											
Keeping in suspension	_																									Γ		Γ				\square	
Thermal oil circulation	-	_																			\square		_	_		_	-	_	-	_		\square	<u> </u>
Draining of pits, shafts, etc. Process engineering		-	-		\vdash	\vdash			\square	$\left \right $	-	\vdash	\vdash	\vdash			\square		-		\vdash		-	-	┝	+	\vdash	+	\vdash	\vdash	-	$\left - \right $	-
Heat recovery systems	-					\vdash			\square			\vdash	\vdash	\vdash					-	-	\vdash			\vdash	┢	+	+	+	+	\vdash	-	\square	
Hot-water heating systems																																	
Washing plants	-				\square			•	•												\square												
Water treatment	_	-	-		\vdash	\square		-	-	•	•	•	\square						_	_	\square		-	-	-	-	-	-	-	-	-	\vdash	<u> </u>
Water extraction Water supply	-	-	-											\vdash						-	\vdash		-						┢	+	-	$\left - \right $	-
Sugar industry	-		-		Ē	-	-	·	-	-	<u> </u>	-	-			-	Ē	Ē	<u> </u>		\vdash		1	+-	1	+	1	1	+	+	1		

Amarex N Amarex N S 32	Amarex N S 32	Amarex N S 32		Amarov VDT	Amarex KRT	Amarex KRT	Amarex KKI		Amarex KRT (jacket cooling)		Amarex KRT (convection cooling)		
	+		┥	╀	_			╀		┥		╉	┢
				ŀ				t		1	_	İ	
_			_	_	_		_	_				-	L
			-	+		-		+				4	⊢
				t,				╈				÷	F
		_	-	t				+	_	1		+	
				Ĺ				Ì				1	Ē
	_		-	+-	-			+		-		\rightarrow	L
			-	-	_		_			-			⊢
+	┼		+	t								+	┢
	┢		1	┢				╈		+		+	Γ
	_		-		_		_			-		-	L
			-	1				4		┦		4	⊢
	┢		╉	t		-						đ	F
	┢		1	T		_		t	_		_	+	Γ
													Ē
				1								4	L
	_		+	╞				+		-		\downarrow	\vdash
				ł.				+				ł	┢
		_	-	t				+	_	1		+	Γ
]	Ē
	_			\downarrow								4	L
			+	ł				+	_	+		+	⊢
		-	-	+-	-		_	-		+		-	F
			1	t				t		1		1	
													L
			-	ŀ						-		4	-
	+		+	┼				┼		+		+	┢
	┢		1	┢				╈		+		+	Γ
				ŀ								1	L
	+		_	+		_		+		_		+	⊢
		-		t				+				Ή	
			1	t				Ť				1	
]	L
	-		_		_	_	_		_		_	_	L
■│■			-	+-	-			-				-	┢
	┢		╉	t				╎		╡		+	
				t				t		1		1	
												4	L
			+	╞				+		-		\downarrow	\vdash
	┢		╉	╀				╀		┥		╉	┢
								\uparrow				1	
								Ţ				1	Ē
												4	F
	+	_	+	+			_	+	_			+	ŀ
			-	+-	-	_	_		-	-	_	-	F
	_	-	-	+-	-				-				
								Ţ				ī	Ē
		_									• • • •	• • • • •	8 8 8 8 8 8 8 8 8 8

		Amacan K	Amacan P	Amacan S	Amamix	Amaprop	Amajet	Amaline		Sewatec	Sewabloc	KWP / KWP-Bloc		WBC	LSA-S	ILCC-M	LCC-R	180	LCV	FGD	Mega		XQM	ZW	HVF		Etaprime L	Etaprime B	EZ D/L	AU	AU Monobloc		
Aquaculture	bes (units					ids				sdu													sdu							\Box
Spray irrigation	Submersible pumps in discharge tubes					-			Pumps for solids-laden fluids			_	Slurry pumps	_			_	_	_	_	_			-		Self-priming pumps	•		+	+	+	+	+
Mining Irrigation	arge			= uiue	-	-	-	-	ader		-	₿	Irry	•	-		-	•		•			-		-	ing		+	+		+	+	+
Chemical industry	lisch	F	-	Mixers / aditators / tank cleaning		1		\vdash	ds-lå			-	S					+	+	+	+					orim				+	+	+	+
Dock facilities	ind			ank					soli																	elf-p							
Drainage	nps			rs/†	_	_			for			•						$ \rightarrow$		$ \rightarrow$	_			-		S			-			_	+
Pressure boosting Sludge thickening	Ind	-		tato		-	-	-	sduu		\rightarrow	_			_	\rightarrow	+	+	+	+	+	+	+	-	-		_		┞	+	+	+	+
Disposal	sible			adi		+	-	\vdash	P								+	+	+	+	+	-	+	+				+	╈	+	+	+	+
Dewatering	mer	•		■ La																									İ				
Descaling units	Sub			– ×i M								•																		\downarrow	\downarrow		
District heating		_		_	-	-	-	-			\rightarrow	_		_	_	_	_	_	_	_	_	_		-	-			\rightarrow	+	+	+	+	+-
Solids transport Fire-fighting systems		\vdash	\vdash			-	-	-		\vdash	\dashv	•		-	-	-	-	-	•						-				+			+	+
Drawdown of groundwater levels			\vdash			-					\neg			\square		+	+	+	+	+	+	+	+	-					-			+	+
Maintaining groundwater levels																																	\square
Domestic water supply										\square																	•		1		•		\downarrow
Flood control / coast protection (stormwater)				_		-	-	_			\neg	_			_	_	+	+	+	+	+	_	-	_	-			\rightarrow	+	+	+	_	+
Homogenisation Industrial recirculation systems				-	F		-	-			\neg					\rightarrow	+	+	+	+	+	-	+	-	-		_	+	+	+	+	+	+
Nuclear power stations						-	-	┢				-				\neg	+	+	+	+	╈	+	+						╈	╈	+	╈	+
Boiler feed applications																																	
Boiler recirculation																														\downarrow	\downarrow		
Waste water treatment plants		•		_	-						-	-			_		-	+	_	+	_		-	_			-		+		╇	_	+
Air-conditioning systems Condensate transport				-		+	┝	\vdash		\vdash	\neg	-		_		\neg	+	+	+	+	+	-	+	-	\vdash		-	-	+	+	+	+	+
Cooling circuits						1												+	+	+	+			+			•			+	+	+	+
Paint shops																																	
Food and beverage industry				_		_						•				$ \rightarrow$	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow		_		-		•	•	\downarrow		•	_	
Seawater desalination / reverse osmosis Mixing		-		-		-	-	-		-	-	-			_	\rightarrow	+	+	+	+	+	_	-	-	-		_	\rightarrow	+	+	+	+	+-
Offshore platforms				-	F	+	\vdash	-		\vdash	\neg	-				\dashv	+	+	+	+	+	-	+	+-	\vdash		-	+	+	+	+	+	+-
Paper and pulp industry						1										\neg	\uparrow	+	+	+	╈		+	1				+	╈	+	+	╈	+
Petrochemical industry																																	
Pharmaceutical industry				_		_						_																			\downarrow		
Pipelines and tank farms Refineries				_	┝		-	-		-	\neg	_			_	-	+	+	+	+	+	_	-	+-	-		_	+	+	+	+	+	+-
Flue gas desulphurisation					┢	+	-	-			\neg					\rightarrow	+	+	+		+	-	+	-	-			+	+	+	+	+	+-
Rainwater harvesting						1	\vdash	\vdash				-					+	+	+	-	+			-					╈	+	╈	╈	+
Cleaning of stormwater tanks / storage sewers																																	
Recirculation																														\downarrow	\downarrow		
Dredging Shipbuilding					-	-	-	-		\vdash	-	_			•	•	-	-	+	+				<u> </u>	-							+	+-
Shipbuilding Sludge disposal		\vdash	\vdash	-	-	-	\vdash	\vdash																	-				╇	-	+	+	+
Sludge processing															-					-									†				1
Snow-making systems																													Ţ	\square	\square		
Heavy oil and coal upgrading				_	-	-	-	-			-	-				\rightarrow	+	+	+	+	+	_	-	-	-		_	_	+	_	_	+	+-
Swimming pools Solar thermal energy systems		\vdash	\vdash	_	-	-	-	-		\vdash	\dashv	_		\vdash		+	+	+	+	+	+	+	+	-	-		-	•	+	-	╇	+	+
Fountains			\vdash			-	\vdash	\vdash		\vdash	\dashv			\square		+	+	+	+	+	+	+	+	-				+	+	+	+	+	+
Keeping in suspension																																	
Thermal oil circulation			\square							Ц	\square					Ţ	\downarrow	\square	Ţ	_	Ţ							Ţ	Ţ	Ţ	\square	1	
Draining of pits, shafts, etc.				_	-	-	-	-		\vdash		_			_	-	+	+	+	+	+	_	-	-	-		_	+	+	+	+	+	+
Process engineering Heat recovery systems		\vdash	\vdash	-	-	+	-	-		\vdash	+	-		\vdash	-	+	+	+	+	+	+	+	+	+-	-		-	+	+	+	+	+	+-
Hot-water heating systems			\vdash			-	-	\vdash		\vdash	+				\neg	+	+	+	+	+	+	+	+	+	-			+	+	+	+	+	+
Washing plants																																	
Water treatment		•		•								•																					
Water cupply		-		-	-	-	-	-		\vdash	-	_			_	-	+	+	+	-	+	_	-	-	-		_	_	_	-		+	+
Water supply Sugar industry				-	-	+	-	-		╞	-			\vdash				+		+	+		-		-		•	-	+	-	-	+	+
Sugar mustry												-			-				-			1	·										

		UPAchrom 100 CC	UPAchrom 100 CN	UPA 150 C	UPA 200, 200B, 250C	UPA 300, 350	UPZ, BSX-BSF		BEV		Comeo	Movitec H(S)I	Movitec	Movitec VCI	Multitec		Omega	RDLO	RDLP	Vitachrom	Vitacast	Vitaprime	Vitastage	Vitalobe		CHTA / CHTC / CHTD	HGB / HGC / HGD	HGM	YNK	LUV / LUVA	WKTB	SEZ / SEZT / PHZ / PNZ	SNW / PNW	Beveron	SPY
		2	-		-		>		8		Ŭ	≥	≥	≥	≥		0	~			>	>	>		_	σ	Ξ	Ξ	~	=	\$	S	S	ě i	S
Aquaculture Spray irrigation		_	-	-	_	_	_	nps	-	High-pressure pumps	_	_	_	_	_	Axially split pumps	_		_		_				islands			_	\vdash	-	\vdash	$\left - \right $	\rightarrow	\rightarrow	
Spray Irrigation Mining	bur							bur	•	bur	•	•		_	₿	bur	-		_		+				isla				\vdash	-		$\left \right $	\rightarrow	+	
Irrigation	<u>e</u>	-						Deep-well turbine pumps		ure						plit				≌ -	┢	-			nal				\vdash	\vdash	\vdash				
Chemical industry	reh	-	-	-	-	-	-	urb	F	ress	-	-	-		ī	Ily s		-							Pumps for power station conventional								-	-	-
Dock facilities	po			\square				ellt		q-h						vial					\top				ING										_
Drainage	sible							≥ d		Hig						٩				m					00										_
Pressure boosting								Deel											•						tior										
Sludge thickening	lab				<u> </u>	<u> </u>													_		_	_			sta								$ \rightarrow$	\rightarrow	
Disposal	_	_			_	_					_	_		_	_				_	Deverage and	_				wer								\rightarrow	\rightarrow	
Dewatering	-	_	-	-	-	-					_	_		_	_		•			- ag	-				bo	_	_		\vdash		\vdash			•	
Descaling units District heating	-	-	\vdash	\vdash	-	-					\neg	_		\neg					_	eve –	+	+			for	•		-	\vdash				\rightarrow	+	
Solids transport	-	-	\vdash	┢	-	-				-		_			-		-	-	-	а —	┢	-			nps			-		\vdash	\vdash		\rightarrow	+	
Fire-fighting systems	_	-	+	┢															_	1000	+	-	-		Pu								\rightarrow	+	
Drawdown of groundwater levels												_								pumps tor the	1	1							H		H			+	_
Maintaining groundwater levels																																			_
Domestic water supply																				S															
Flood control / coast protection (stormwater)																																			
Homogenisation	-																																$ \rightarrow$	\rightarrow	
Industrial recirculation systems	-	_	_	_	_	_					•	•			-					Hygienic	_	_									\vdash	-	\rightarrow	\rightarrow	
Nuclear power stations	_	<u> </u>	-	\vdash	-	-					-	_	_	_	_		-		_	<u>-</u>	-							_							
Boiler feed applications Boiler recirculation	_	-	-	\vdash	-	-					_				-				-	┢	-					•		•	┍━┘				\rightarrow	+	_
Waste water treatment plants	_	-	-	┢	-	-			H			_			-			_			+	-	<u> </u>					-	\vdash	-	\vdash	\vdash	\rightarrow	+	_
Air-conditioning systems	-			\vdash	-																+	+											\neg	+	_
Condensate transport				┢								_									1	1												\neg	
Cooling circuits		•													•																				
Paint shops																																			_
Food and beverage industry	-																																	$ \rightarrow$	
Seawater desalination / reverse osmosis	-	_													•		•				_	_													_
Mixing	_	<u> </u>	_	-	<u> </u>	<u> </u>						_			_				_		_												\rightarrow	\rightarrow	
Offshore platforms	_	_	-	-	_	_					_	-		_	_				_	┢	-									-			\rightarrow	+	
Paper and pulp industry Petrochemical industry		-	\vdash	┢	-	-					_	-	-	_					-		+							-	\vdash	-	\vdash		_		
Pharmaceutical industry	-	-	+	\vdash	-	-						_			-		-	-															-	-+	
Pipelines and tank farms	_	-	-	┢								_								F	+-	+-	-	-										+	
Refineries				\square								_									1													\neg	_
Flue gas desulphurisation																																			_
Rainwater harvesting																																			
Cleaning of stormwater tanks / storage sewers	-																																$ \rightarrow$	\downarrow	
Recirculation		_	_	-	_							_			_				_		_							_					\rightarrow	\rightarrow	
Dredging Shipbuilding		<u> </u>	-	\vdash	-	-													_	┢	-												\rightarrow	+	
Singbuilding Sludge disposal		-	-	┢	-	-			-			_			-		-	-		-	+-	-						-	\vdash		\vdash	$\left - \right $	\rightarrow	+	_
Sludge processing		-	\vdash	┢	-	-						_									+	-											\neg	+	
Snow-making systems			\square	┢								_									┢													+	
Heavy oil and coal upgrading				\square								_																						\neg	_
Swimming pools																																			_
Solar thermal energy systems	_																																	$ \rightarrow$	
Fountains	_								•						_							_												\rightarrow	
Keeping in suspension		_	-	-	-	-					_	_		_	_		_		_	-	_							_	\vdash	-	\vdash	$\left - \right $	\rightarrow	\rightarrow	
Thermal oil circulation Draining of pits, shafts, etc.	_	-	-	\vdash	-	-			\vdash			_			_					┠	+	+	-	$\left - \right $		\vdash	-	-	\vdash	\square	\vdash	\vdash	+	+	
Process engineering		-	-	\vdash	-	-			\vdash			_	\square							┢	+	+	-	\vdash		\vdash	-	-	\vdash	\vdash	\vdash	\vdash	\dashv	+	—
Heat recovery systems			1	\vdash					\square			_		-							+	+		\dashv					⊢	\square	\vdash	\vdash	\dashv	+	_
Hot-water heating systems																																			
Washing plants															•																				
Water treatment	-			-											•				•											\square		Ц	\square	\downarrow	
Water extraction	_								•						•		•		•		_	-					<u> </u>	_	\vdash	\square	\vdash			-	
Water supply	_								•		•	•			-		-		-		+	+	_	H		\square	-	-	\vdash	\square	\vdash			-	
Sugar industry																																			

					, La	5				ő						K CB CuDramE	-S II		ter										
					I IIV Nuclear					Multitec-RO		RC / RCV		Ē		a di s	KSB UMA-S		PumpMeter										
	ű	RSR	3 :	£ £	2	₽Ĕ	ž	RHR	¥	lulti		5		EDS		5	8		m										
Aquaculture		~	~ (1 62	~	~								-	-		▲										
Spray irrigation	power stations				+	+	-	$\left \right $			Positive displacement pumps		systems					and diagnosis				\rightarrow					+		
Mining	sta										nt pu		g sys		_ (diag											
Irrigation	I AMO				_	_	_		_		mer		Fire-fighting					nd		_		\rightarrow					_	\square	
Chemical industry Dock facilities	pq		\rightarrow	_	+	_	\vdash	$\left \right $		ē	lace	-	-figh		-	-	-			_		+	_	_	$\left \right $	_	_	\vdash	
Drainage	Pumps for nuclear				╈	+	┢	\vdash			disp		Fire					Monitoring				\uparrow	+	+			+		
Pressure boosting	r n										tive						_	loni											_
Sludge thickening	os fo				_	_	_				Posi				_	4		2		_		\rightarrow					_	\square	
Disposal Dewatering	m_		_	_	-	_	-	$\left \right $		- a	-	\vdash			_					-		_	_	_	$\left \right $	_	-	$\left - \right $	
Descaling units	<u> </u>		\neg		+	+-	┢	\vdash	- 4 -			\vdash					_			+-		+	+	+	$\left \right $	+	+	\vdash	
District heating																													
Solids transport										<u>د</u>																			_
Fire-fighting systems Drawdown of groundwater levels						_					-	\vdash				-						_		_	$\left \right $	_	_	\square	
Maintaining groundwater levels	-		-		┢	+-	┢	$\left \right $	-			\vdash							-	+-		+	+	+	$\left \right $	+	+-	$\left - \right $	
Domestic water supply					╈		\vdash															1					+	\square	
Flood control / coast protection (stormwater)																												\Box	_
Homogenisation					_	_	_		_		-				_				_			_	_	_	$\left \right $	_	_	$\left - \right $	
Industrial recirculation systems Nuclear power stations																-	-		•	-		+	+	-	$\left \right $	+	+	$\left \right $	
Boiler feed applications			-				-		-											-		+	+				+	\square	
Boiler recirculation																													
Waste water treatment plants	_					_					-				_		-											\square	
Air-conditioning systems Condensate transport	-		+	-	┢	-	\vdash	\vdash											•	-		+	+	-	$\left \right $	-	+	$\left \right $	
Cooling circuits					+	+											_			+			+				+	\square	
Paint shops																												\Box	_
Food and beverage industry					_	_	_		_		-				_	4						_	_	_	$\left \right $	_	_	$\left - \right $	
Seawater desalination / reverse osmosis Mixing	_		+	-	╞	-	┢	$\left \right $		-		\vdash								-		+	+	-	$\left \right $	-	+	$\left \right $	
Offshore platforms					+	+											-			+			+				+		
Paper and pulp industry																													
Petrochemical industry	_				_	_	-		_		-				_					_		+	_		$\left \right $		_	\square	
Pharmaceutical industry Pipelines and tank farms	-		+		╞		\vdash	$\left \right $			-						-			-		+	+	-	$\left \right $	-	+	$\left \right $	
Refineries					╈	1	1	\square														1					1	H	
Flue gas desulphurisation																													_
Rainwater harvesting Cleaning of stormwater tanks / storage sewers	_				_	_	-		_		-				_					_		+	_	_	$\left \right $		_	\square	
Recirculation	-				-	+-	-	$\left \right $			-	\vdash										\rightarrow			$\left \right $	+	+-	\vdash	
Dredging																	_												
Shipbuilding																													_
Sludge disposal	_				_	_	-	\square	_		-				_	-	_			_		+	_	_	$\left \right $		_	\square	
Sludge processing Snow-making systems	-		-	_	╞	-	-	$\left \right $			-	\vdash			-					-		+	+	-	$\left \right $	-	+	$\left \right $	
Heavy oil and coal upgrading	-				+	+	\vdash												_	+						+	+		
Swimming pools																													_
Solar thermal energy systems Fountains	_				_	_	-	\square	_		-	■			_				_	_		+	_		$\left \right $		_	\square	
Keeping in suspension	-		\rightarrow	_	+	+-	┢	$\left \right $			-	\vdash										+			$\left \right $	+	+-	$\left \right $	
Thermal oil circulation																													
Draining of pits, shafts, etc.																											\Box	\square	_
Process engineering		$\left \right $	-	+	_	_	-	\square	_		-	\square			_				_	-	\square	+	_	_	$\left \right $	_	+-	\square	_
Heat recovery systems Hot-water heating systems		$\left \right $	_	_	+	+	-	$\left \cdot \right $	_	┣	-	\vdash		\vdash	_					+	$\left \cdot \right $	+	+	+	+	-	+	$\mid \mid$	
Washing plants			\neg	+	+	+		\vdash						+						+		+	+	+	\vdash	+	+	H	_
Water treatment																													_
Water extraction			_	+	_	_	_	\square	_		-	\mid			_					_	\square	_	_	_	$\left \right $	_	+-	\square	_
Water supply Sugar industry		$\left \right $	_	_	+	+	-	$\left \cdot \right $	_	┣	-	\vdash		\vdash	_					+	$\left \cdot \right $	-	+	+	+	-	+-	\vdash	
Sugar industry																	• •												

Drive, variable speed system and monitoring

KSB SuPremE

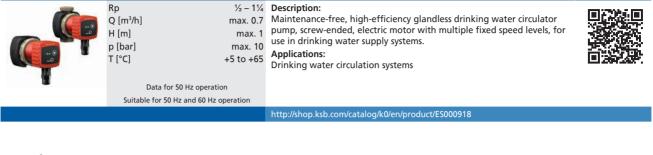
No. of pumps Voltage [V]	max. 1 Power supply via PumpDrive only	efficiency class IE4 (super premium efficiency) to IEC/CD 60034-30 Ed. 2.0 (05-2011) for operation with the KSB PumpDrive S or KSB PumpDrive R variable speed system. Suitable for connection to three-phase 380-480 V mains (via PumpDrive). The motor mounting points comply with EN 50347 specifications to ensure compatibility with standardised IEC frame motor applications and full interchangeability with IE2 or IE3 standardised asynchronous motors. Envelope dimensions lie within the limits for IE2 / IE3 motors as recommended in DIN V 42673 (07-2011). The motor is controlled without rotor position indicators. The efficiency of the motor also exceeds 95 percent of nominal efficiency when the motor runs at 25 percent of its nominal power on a quadratic torque-speed curve. The motor is magnetless which means that, in particular, so-called rare earths are not used in production. Drive production is thus sustainable and environmentally friendly. Applications: For use with dry-installed variable speed pumps which can be driven by standardised foot-mounted and/or flange-mounted motors.	
		http://shop.ksb.com/catalog/k0/en/product/ES000866	

KSB UMA-S

No. of pumps Voltage [V]	max. 1 Power supply via PumpDrive R	Description: Permanent-magnet submersible synchronous motor, for operation on a KSB PumpDrive R variable speed system. Suitable for a 3-phase 380 - 400 V mains (via PumpDrive R). NEMA connections and identical outside diameters ensure full interchangeability with comparable 6" or 8" asynchronous motors. The motor is controlled without rotor position indicators. The motor efficiency is 5 - 12 % above that of asynchronous motors. Given the design and functionality the use of permanent magnets is essential. Applications: Exclusively for submersible borehole pumps in the range of 4 - 150 kW.	
		http://shop.ksb.com/catalog/k0/en/product/ES000003	

PumpDrive 2 / PumpDrive 2 Eco

				PumpDrive is self-cooling, it can be mounted on the motor, on the wall	
--	--	--	--	--	--


PumpMeter

No. of pumps Voltage [V]	max. 1 24 V DC	Description: The PumpMeter device is designed for monitoring pump operation. It is an intelligent pressure transmitter for pumps, with on-site display of measured values and operating data. It records the load profile of the pump in order to indicate any potential for optimising energy efficiency and availability. The device comprises two pressure sensors and a display unit. PumpMeter is supplied completely assembled and parameterised for the pump it is used with. It is ready for operation as soon as the M12 plug connector is plugged in. Applications: Air-conditioning systems, cooling circuits, cooling lubricant distribution, heating systems, water transport systems, water extraction systems	
		http://shop.ksb.com/catalog/k0/en/product/ES000807	

Drinking water circulators, fixed speed

Calio-Therm S NC/NCV

Rio-Therm N

or the second se	Rp / DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	1¼ – 2 / 40 – 80 max. 50 max. 9 max. 10 max. +80 max. 2800	Maintenance-free, fixed speed glandless drinking water circulator pump, screw-ended or flanged, electric motor with multiple fixed speed levels, for use in drinking water supply systems and hot water supply systems. Applications: Drinking water supply systems, hot water supply systems and similar	
			http://shop.ksb.com/catalog/k0/en/product/ES000132	

Calio-Therm NC

Rp / DN Q [m³/h] H [m] p [bar] T [°C] p [rpm]	max. 8 max. 10 +2 to +65	Maintenance-free, fixed speed glandless drinking water circulator pump, screw-ended or flanged, electric motor with multiple fixed speed levels, for use in drinking water supply systems and hot water supply systems. Applications: Drinking water supply systems, hot water supply systems and similar	
n [rpm]	max. 2800	Drinking water supply systems, hot water supply systems and similar	
		http://shop.ksb.com/catalog/k0/en/product/ES000928	

Drinking water circulators, variable speed

Rio-Eco Therm N

Rp / DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	max 38	continuously variable differential pressure control for use in drinking water supply systems and hot water supply systems.	
		http://shop.ksb.com/catalog/k0/en/product/ES000877	

Calio-Therm

Rp / DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	max. 12 max. 10 +2 to +65	Maintenance-free, high-efficiency variable speed glandless drinking water circulator pump, screw-ended or flanged, electric motor and continuously variable differential pressure control for use in drinking water supply systems and hot water supply systems	
		http://shop.ksb.com/catalog/k0/en/product/ES000877	

Calio-Therm S

Rp Q [m³/h] H [m] p [bar] T [°C] n [rpm]	max. 6 max. 10 +2 to +65	Maintenance-free, high-efficiency variable speed glandless drinking water circulator pump, screw-ended, electric motor and continuously variable differential pressure control for use in drinking water supply systems and hot water supply systems	
		http://shop.ksb.com/catalog/k0/en/product/ES000882	

Circulators, variable speed

Calio S

	Rp Q [m³/h] H [m] p [bar] T [°C] n [rpm]	max. 3.5 max. 6	Applications: Heating, ventilation, air-conditioning and heat recovery systems, cooling	
--	---	--------------------	--	--

http://shop.ksb.com/catalog/k0/en/product/ES000881

Calio

	Rp / DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	max. 18	Maintenance-free high-efficiency flanged or screw-ended glandless pump with high-efficiency electric motor and continuously variable differential pressure control. Applications: Heating, ventilation, air-conditioning and heat recovery systems, cooling	
--	--	---------	--	--

http://shop.ksb.com/catalog/k0/en/product/ES000881

Rio-Eco N

Rp / DN Q [m³/h] H [m] p [bar] T [°C]	max 65	relay (general fault message) and continuously variable differential pressure control	
		http://shop.ksb.com/catalog/k0/en/product/ES000493	

Rio-Eco Z N

DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	max. 56 max. 12 max. 10 -10 to +110	pressure control	
		http://shop.ksb.com/catalog/k0/en/product/ES000493	

In-line pumps

Etaline L

	Rp / DN Q [m³/h] H [m] p [bar] T [°C]	max. 21	Single-stage close-coupled in-line volute casing pump with common motor/pump shaft and uncooled mechanical seal. Applications:	
PumpDrive, Switchgea	r		http://shop.ksb.com/catalog/k0/en/product/ES000925	

Etaline DL

	Rp / DN Q [m³/h] H [m] p [bar] T [°C]	max. 150	Applications:	
PumpDrive, Switchgea	r		http://shop.ksb.com/catalog/k0/en/product/ES000926	

Etaline

	DN Q [m³/h] H [m] p [bar] T [°C]	max. 700 max. 95	Description: Single-stage volute casing pump in in-line design with standardised motor; pump shaft and motor shaft are rigidly connected. Applications: Hot water heating, cooling circuits, air-conditioning, water supply systems, service water supply systems, industrial recirculation systems	
T				

PumpMeter, PumpDrive, Switchgear, KSB SuPremE http://shop.ksb.com/catalog/k0/en/product/ES000113

Etaline Z

	DN Q [m³/h] H [m] p [bar] T [°C]	max. 1095 max. 38.5	Applications:	
PumpMeter, PumpDriv	e, Switchgear, KSB Su	uPremE	http://shop.ksb.com/catalog/k0/en/product/ES000114	

Etaline-R

A A A	DN Q [m³/h] 4 [m] 9 [bar] - [°C]		Description: Vertical, close-coupled in-line pump with volute casing and standardised motor. Applications: Hot water heating, cooling circuits, air-conditioning, water supply systems, service water supply systems, industrial recirculation systems	
PumpMeter, PumpDrive,	Switchgear, KSB SuPrem	:	http://shop.ksb.com/catalog/k0/en/product/ES000812	

ILN / ILNE / ILNS

	DN Q [m³/h] H [m]	65 – 400 max. 3100 max. 112	Vertical in-line centrifugal pump with closed impeller and mechanical	
-		-20 to +70 max. 3000 Data for 50 Hz operation Also available for 60 Hz	Applications:	384 <u>1</u> 87.
Switchgear			http://shop.ksb.com/catalog/k0/en/product/ES000730	

ILNC / ILNCE / ILNCS

	DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	max. 370 max. 112 max. 16 -20 to +70	auxiliary vacuum pump, ILNCE with ejector. Standardised IEC frame motor. ATEX-compliant version available. Applications: Hot-water heating systems, cooling circuits, air-conditioning systems, marine applications, water and service water supply systems, cleaning systems and industrial recirculation systems.	
Switchgear			http://shop.ksb.com/catalog/k0/en/product/ES000732	

Megaline

	DN Q [m³/h] H [m] p [bar] T [°C]	max. 600	wear rings. Volute casing in in-line design with closed radial impeller, with multiply curved vanes, single mechanical seal to FN 12756	
PumpMeter			http://www.ksb.com.br/ksb-br-pt/pesquisa.php?_q=megaline	

Standardised / close-coupled pumps

Etanorm

	Q [m³/h] H [m] p [bar]	max. 740 max. 160 max. 16	Description: Volute casing pump, single-stage, ratings to EN 733, meets the requirements of the 2009/125/EC directive, radially split volute casing, volute casing with integrally cast pump feet, replaceable casing wear rings (optionally available for casings in material variant C), closed radial impeller with multiply curved vanes, single mechanical seals to EN 12756, double mechanical seals to EN 12756, shaft fitted with a replaceable shaft protecting sleeve in the shaft seal area. Applications: Pumping pure liquids not chemically or mechanically aggressive to the pump materials: water supply, cooling water, swimming pool water, fire- fighting systems, seawater, spray irrigation, fire-fighting water, irrigation, service water, cleaning agents, drinking water, brackish water, drainage, condensate, heating, air-conditioning, oils, hot water.	
PumpMeter, PumpDriv	e, KSB SuPremE		http://shop.ksb.com/catalog/k0/en/product/ES000062	

Pumps

	DN Q [m³/h] H [m] p [bar] T [°C]	Description: Horizontal volute casing pump, single-stage (size 125-500 with two stages), long-coupled, in back pull-out design, with replaceable shaft sleeves / shaft protecting sleeves and casing wear rings. ATEX-compliant version available. Applications: Spray irrigation, irrigation, drainage, district heating, water supply systems, heating and air-conditioning systems, condensate transport, swimming pools, fire-fighting systems, handling hot water, cooling water, fire-fighting water, oil, brine, drinking water, brackish water, service water, etc.	
PumpMeter, PumpDriv	e, KSB SuPremE	http://shop.ksb.com/catalog/k0/en/product/ES000058	

Etabloc

	DN 25 - Q [m³/h] max. H [m] max. p [bar] max T [°C] -30 to +	 requirements of the 2009/125/EC directive, radially split volute casing (some volute casings with integrally cast pump feet), replaceable casing wear rings (optionally available for casings in material variant C) closed 	
📕 PumpMeter, PumpDriv	e, KSB SuPremE	http://shop.ksb.com/catalog/k0/en/product/ES000107	

Etachrom B

	DN Q [m³/h] H [m] p [bar] T [°C]	max. 250 max. 105 max. 12	ATEX-compliant version available.	
PumpMeter, PumpDriv	e, KSB SuPremE		http://shop.ksb.com/catalog/k0/en/product/ES000066	

Etachrom L

	DN Q [m³/h] H [m] p [bar] T [°C]	max. 250 max. 105 max. 12	compliant version available.	
PumpMeter, PumpDriv	e, KSB SuPremE		http://shop.ksb.com/catalog/k0/en/product/ES000065	

Etanorm V

ľ	DN Q [m³/h] H [m] p [bar] T [°C]	max. 675 max. 102 max. 16	 Description: Single-stage volute casing pump for vertical installation in closed tanks under atmospheric pressure, with ratings to EN 733. Suitable for immersion depths of up to 2000 mm. Applications: Pumping neutral degreasing and phosphatising solutions, wash water with degreasing agents, dipping paints, etc. 	
PumpDrive, KSB SuPre	mE, LevelControl		http://shop.ksb.com/catalog/k0/en/product/ES000015	

Meganorm

	DN Q [m³/h] H [m] p [bar] T [°C]	max 1160	with radial impeller, single-entry, single-stage, to DIN EN ISO 2858/ ISO 5199. Available with cylindrical or conical shaft seal chamber.	
PumpMeter, PumpDrive, KSB SuPremE			http://www.ksb.com.br/ksb-br-pt/pesquisa.php?_q=Meganorm	

Megabloc

	H [m] p [bar]	max. 550	design, single-stage, radially split volute casing, flanged or screw-ended (optional), replaceable casing wear rings. Volute casing with closed radial impeller with multiply curved vanes, single mechanical seal to EN 12756.	
PumpMeter			http://www.ksb.com.br/ksb-br-pt/pesquisa.php?_q=Megabloc	

Hot water pumps

HPK-L

Junio	DN Q [m³/h] H [m] p [bar] T [°C]	max, 1160	Equipped with heat barrier, seal chamber air-cooled by integrated fan impeller, no external cooling. ATEX-compliant version available.	
PumpDrive, KSB SuPremE			http://shop.ksb.com/catalog/k0/en/product/ES000036	

НРК

	DN Q [m³/h] H [m] p [bar] T [°C]	Optional TRD type testing by TÜV. ATEX-compliant version available.	
PumpDrive		http://shop.ksb.com/catalog/k0/en/product/ES000034	

HPH

DN Q [m³/h] H [m] p [bar] T [°C]	max. 2350 max. 225 max. 110	Optional TRD type testing by TÜV. ATEX-compliant version available. Applications: Pumping hot water in high-pressure hot water generation plants, as boiler feed or recirculation pump.	
		http://shop.ksb.com/catalog/k0/en/product/ES000037	

Hot water / thermal oil pumps

Etanorm SYT / RSY

	DN Q [m³/h] H [m] p [bar] T [°C]	max 1900	casing, volute casing with integrally cast pump feet, replaceable casing wear rings, closed radial impeller with multiply curved vanes, single	
PumpDrive, KSB SuPremE			http://shop.ksb.com/catalog/k0/en/product/ES000790	

Etabloc SYT

	DN Q [m³/h] H [m] p [bar] T [°C]	may 337	Description: Volute casing pump for horizontal and vertical installation, back pull-out design, single-stage, with ratings to EN 733, radially split volute casing, replaceable casing wear rings, volute casing with integrally cast pump feet, closed radial impeller with multiply curved vanes, single mechanical seal to EN 12756, product-lubricated carbon plain bearing and grease- lubricated radial ball bearing in the motor housing. Applications: Heat transfer systems (DIN 4754, VDI 3033) or hot water recirculation	
PumpDrive, KSB SuPremE			http://shop.ksb.com/catalog/k0/en/product/ES000791	

Etaline SYT

	Q [m³/h] max. 316 H [m] max. 101	Description: Single-stage volute casing pump in in-line design with standardised motor; pump shaft and motor shaft are rigidly connected. Applications: Heat transfer systems (DIN 4754, VDI 3033) or hot water recirculation	
--	-------------------------------------	---	--

PumpDrive, KSB SuPremE

http://shop.ksb.com/catalog/k0/en/product/ES000789

Standardised chemical pumps

MegaCPK

	DN Q [m³/h] H [m] p [bar] T [°C]	max, 1160	A LEX-compliant version available.	
PumpMeter, PumpDrive, KSB SuPremE			http://shop.ksb.com/catalog/k0/en/product/ES000861	

CPKN

M	DN Q [m³/h] H [m] p [bar] T [°C]	1160 - 4150	Description: Horizontal radially split volute casing pump in back pull-out design, with radial impeller, single-entry, single-stage, to ISO 2858 / ISO 5199. Also available as a variant with "wet" shaft, conical seal chamber and/or semi-open impeller (CPKNO). ATEX-compliant version available. Applications: Pumping aggressive liquids in the chemical and petrochemical industries, refinery systems, fire-fighting systems and for brine transport.	
PumpDrive			http://shop.ksb.com/catalog/k0/en/product/ES000027	

Seal-less pumps

Magnochem

	DN Q [m³/h] H [m] p [bar] T [°C]	max. 1160	Amplications	
PumpMeter, PumpDriv	o KSB SupromE		http://shop.ksb.com/catalog/k0/en/product/ES000046	

Magnochem-Bloc

	DN Q [m³/h] H [m] p [bar] T [°C]	max 754	single-entry, single-stage. ATEX-compliant version available.	
PumpMeter, PumpDrive			http://shop.ksb.com/catalog/k0/en/product/ES000045	

Etaseco / Etaseco-l

	DN Q [m³/h] H [m] p [bar] T [°C]	impeller, single-stage, single-entry, casing connecting dimensions to EN 733.	
PumpMeter, PumpDriv	'e	http://shop.ksb.com/catalog/k0/en/product/ES000122	

Etaseco RVP

	DN Q [m³/h] H [m] p [bar] T [°C]	max. 20 max. 25 max. 10	impeller, single-stage, single-entry.	
PumpMeter, PumpDriv	e		http://shop.ksb.com/catalog/k0/en/product/ES000122	

Process pumps

RPH

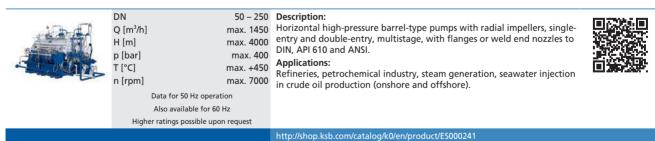
DN Q [m³/h] H [m] p [bar] T [°C]	max 4150	Alex-compliant version available.	
		http://shop.ksb.com/catalog/k0/en/product/ES000040	

RPHb

DN Q [m³/h] H [m] p [bar] T [°C]	Description: Heavy-duty horizontal radially split between-bearings volute casing pump to API 610 (type BB2) with radial impellers, single-entry, two- stage, with centreline pump feet. Applications: Refineries, petrochemical and chemical industries, offshore and onshore processes.	
	http://shop.ksb.com/catalog/k0/en/product/ES000041	

RPH-V

_			· · · · · · · · · · · · · · · · · · ·		0
	<u>6</u>	DN2 / DN			
		Q [m³/h]		Vertical radially split volute casing pump to API 610 and ISO 13709	
	I.s.	H [m]	max. 164		
		p [bar]	max. 51	Applications:	1 A 12-24
		T [°C]	-30 to +230	Refineries, petrochemical and chemical industries, offshore and onshore	回波提
	11			processes.	
	1	1	Data for 50 Hz operation		
	-		Also available for 60 Hz		
				http://shop.ksh.com/catalog/k0/en/product/ES000880	


RPHmdp

-	DN	25 – 100	Description:	C102-97.121
	Q [m³/h]	max. 300	Horizontal radially split volute casing pump in back pull-out design to	
AT PORT	H [m]	max. 270	API 685 (heavy-duty), with magnetic drive, single-stage, single-entry, with radial impeller, centreline pump feet; with inducer, if required.	
	p [bar]	max. 51	with radial impeller, centreline pump feet; with inducer, if required.	
	T [°C]	-40 to +300	ATEX-compliant version available.	
			Applications:	
		Data for 50 Hz operation	Refineries, petrochemical and chemical industries, power stations.	
		Also available for 60 Hz		
			http://shop.ksb.com/catalog/k0/en/product/ES000884	

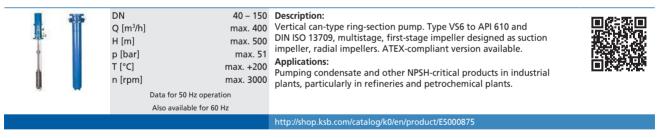
CTN

DN 25-250 / 250-400 Q [m³/h] max. 950 H [m] max. 115 p [bar] max. 16 T [°C] max. +300 Data for 50 Hz operation Available for 50 Hz and 60 Hz	Radially split vertical shaft submersible pump with double volute casing for wet and dry installation, with radial impeller, single-entry, single- stage or double-stage; heatable model available. ATEX-compliant version available	
	http://shop.ksb.com/catalog/k0/en/product/ES000014	

CHTR

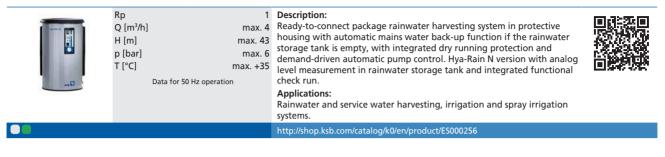
CINCP / CINCN

ļ	max. 780	Semi-open impeller, pump shaft without guide bearings, supported by ball bearings in the upper section. Supplied with discharge pipe extending above the baseplate (CINCP) or without discharge pipe (CINCN). ATEX-compliant version available.	
		http://shop.ksb.com/catalog/k0/en/product/ES000718	


INVCP / INVCN

IJ	Q [m³/h] max. H [m] max p [bar] max T [°C] -10 to	x. 1600 ax. 116 nax. 10 o +100 x. 3000	Description: Vertical immersion pump for wet or dry installation, available with closed or semi-open impeller. Supplied with discharge pipe extending above the baseplate (INVCP) or without discharge pipe (INVCN). ATEX- compliant version available. Applications: Pumping chemically aggressive, slightly contaminated or solids-laden fluids in the chemical and petrochemical industries.
			http://shop.ksb.com/catalog/k0/en/product/ES000737

RWCP / RWCN


	max. 700 max. 100 max. 16 -10 to +100 max. 3000 r 50 Hz operation	Process pump with free-flow impeller, semi-open or two-channel or three-channel impeller. Shaft sealed by mechanical seal or gland packing in accordance with various API pipework plans. Oil-lubricated bearings. ATEX-compliant version available. Applications:	
		http://shop.ksb.com/catalog/k0/en/product/FS000748	
	Q [m³/h] H [m] p [bar] T [°C] n [rpm] Data fo	Q [m³/h] max. 700 H [m] max. 100 p [bar] max. 16 T [°C] -10 to +100	Q [m³/h] max. 700 H [m] max. 100 p [bar] max. 16 T [°C] -10 to +100 n [rpm] max. 3000 Data for 50 Hz operation Also suitable for 60 Hz operation

WKTR

Rainwater harvesting systems

Hya-Rain / Hya-Rain N

Hya-Rain Eco

,	Rp Q [m³/h] H [m] p [bar] T [°C]	1 max. 4 max. 43 max. 6 max. +35 Data for 50 Hz operation	automatic pump control.	
			http://shop.ksb.com/catalog/k0/en/product/ES000600	

Domestic water supply / swimming pool pumps

Emporia CP

Rp Q [m³/h] H [m] p [bar] T [°C] n [rpm]	1 max. 7.5 max. 55 max. 8 max. 90 max. 2800	A series of the	
		http://shop.ksb.com/catalog/k0/en/product/ES000921	

Emporia MB

Rp Q [m³/h] H [m] p [bar] T [°C] n [rpm]	max. 15 max. 90	A series of a series of the se	
		http://shop.ksb.com/catalog/k0/en/product/ES000922	

Emporia PD

H [m] max. 55		
	http://shop.ksb.com/catalog/k0/en/product/ES000923	

Multi Eco

M	Rp Q [m³/h] H [m] p [bar] T [°C] n [rpm]	max. 8 max. 54	irrigation and washing plants, water supply and rainwater harvesting	
📒 Cervomatic, Controlma	itic		http://shop.ksb.com/catalog/k0/en/product/ES000085	

Multi Eco-Pro

Rp Q [m ³ /h] H [m] p [bar] T [°C] n [rpm]	and stopping the pump in line with consumer demand and protecting it against dry running. Automated with automatic control unit.	
	http://shop.ksb.com/catalog/k0/en/product/ES000253	

Multi Eco-Top

Rp Q [m³/h] H [m] p [bar]	max. 8	Multistage self-priming centrifugal pump in close-coupled design incl. accumulator with replaceable membrane in drinking water quality, total volume 20 or 50 litres, pressure switch for automatic pump operation	
H [m]	max. 54 max. 7 max. +50 max. 2800	accumulator with replaceable membrane in drinking water quality, total volume 20 or 50 litres, pressure switch for automatic pump operation and 1.5-metre power cable with plug.	
		http://shop.ksb.com/catalog/k0/en/product/ES000254	

Movitec VME

	Rp Q [m³/h] H [m] p [bar] T [°C] n [rpm]	max 9	nominal diameters arranged ennesite to each other (in line design)	
PumpMeter			http://shop.ksb.com/catalog/k0/en/product/ES000854	

Ixo N

	Rp Q [m³/h] H [m] T [°C] n [rpm]	max. 8 max. 65	Description: Multistage close-coupled centrifugal pump for fully or partly submerged operation (min. immersion depth 0.1 m), with low-level inlet, suction strainer with a max. mesh width of 2.0 mm. Applications: Water supply systems, spray irrigation, irrigation and washing plants, rainwater harvesting systems and water extraction from wells, reservoirs and rainwater storage tanks.	
Switchgear, Cervomatio	:		http://shop.ksb.com/catalog/k0/en/product/ES000007	

Ixo-Pro

Rp Q [m³/h] H [m] T [°C]	1 max. 3.9 max. 60 max. +35 Data for 50 Hz operation	flow sensor and lift check valve. Electronic dry running protection with	
		http://shop.ksb.com/catalog/k0/en/product/ES000896	

Filtra N

Rp Q [m³/h] H [m] p [bar] T [°C] n [rpm]	 water with a max. chlorine content of 0.3 %; ozonised swimming pool water with a max, salt content of 7 ‰	
	http://shop.ksb.com/catalog/k0/en/product/ES000090	

Pressure booster systems

KSB Delta Compact

	O [m³/h] max.12	Domostic water supply water supply systems, spray irrigation systems	
		http://shop.ksb.com/catalog/k0/en/product/ES000929	

Hya-Solo EV

Rp Q [m³/h] H [m] p [bar] T [°C]	max. 50 max. 10	Fully automatic package pressure booster system with one vertical high- pressure pump and continuously variable speed adjustment. Design and function as per DIN 1988.	
		http://shop.ksb.com/catalog/k0/en/product/ES000883	

Hya-Solo D

Rp / DN Q [m³/h] H [m] p [bar] T [°C]	max. 110 max. 150 may. 16	Water supply systems for residential and office buildings irrigation and	
		http://shop.ksb.com/catalog/k0/en/product/ES000250	

Hya-Solo DSV

Rp / DN Q [m³/h] H [m] p [bar] T [°C]	1 / 100 max. 110 max. 150 max. 16 max. +70 Data for 50 Hz operation	Fully automatic variable speed package single-pump system with magnetless high-efficiency KSB SuPremE IE4 motor (to IEC/ CD 60034-30 Ed. 2) with PumpDrive. The system is started as a function of pressure and stopped as a function of flow. Applications: Water supply systems for residential and office buildings, irrigation and spray irrigation, rainwater harvesting and service water supply systems in trade and industry.	
		http://shop.ksb.com/catalog/k0/en/product/ES000251	

Hya-Solo D FL

Rp / DN Q [m ³ /h] H [m] p [bar] T [°C] Data	max. 110 max. 150	Description: Fully automatic package single-pump system. The system is started and stopped as a function of pressure. Design and function as per DIN 14462. Applications: Pressure boosting in fire protection systems to DIN 14462.	
		http://shop.ksb.com/catalog/k0/en/product/ES000709	

Hya-Duo D FL

HE HE	Rp / DN Q [m ³ /h] H [m] p [bar] T [°C] Data fr	max, 110	Applications:	
			http://shop.ksb.com/catalog/k0/en/product/ES000710	

Hya-Solo D FL Compact

DN Q [m³/h] H [m] p [bar] T [°C]	max. 48	started and stopped as a function of pressure. Design and function as per DIN 14462. Applications: Fire-fighting applications to DIN 14462.	
		http://shop.ksb.com/catalog/k0/en/product/ES000821	

Hya-Duo D FL Compact

DN Q [m³/h] H [m] p [bar] T [°C]	max. 48 max. 150 may. 16	is started and stopped as a function of pressure. Design and function as per DIN 14462	
		http://shop.ksb.com/catalog/k0/en/product/ES000820	

Pumps

Rp / DN Q [m ³ /h] H [m] p [bar] T [°C]	 Description: Fully automatic package pressure booster system with either 2 or 3 vertical high-pressure pumps, and continuously variable speed adjustment of all pumps for fully electronic control of the required supply pressure, with two standard volt-free changeover contacts for fault indication. Design and function as per DIN 1988. Automated with BoosterControl. Applications: Pressure boosting in residential buildings, hospitals, office buildings, hotels, department stores, industry, etc. 	
	http://shop.ksb.com/catalog/k0/en/product/ES000596	

Hyamat K

	⁶ supply pressure, with volt-free changeover contact for general fault indication and live-zero monitoring of the connected sensors, design and
	http://shop.ksb.com/catalog/k0/en/product/ES000247

Hyamat V

	Rp / DN Q [m³/h] H [m] p [bar] T [°C]	max. 660	pump; for fully electronic control of the required supply pressure. Design and function as per DIN 1988. Automated with BoosterControl.	
Me an anna an an an an an an an an an an a			hotels, department stores, industry, etc.	
			http://shop.ksb.com/catalog/k0/en/product/ES000417	

Hyamat SVP

Rp / DN Q [m ³ /h] H [m] p [bar] T [°C]	max 660	of the required supply pressure. Design and function as per DIN 1988	
		http://shop.ksb.com/catalog/k0/en/product/ES000418	

Surpress Eco SE.2.B

Rp / DN Q [m ³ /h] H [m] p [bar] T [°C]	may 70	Description: Fully automatic package pressure booster system with either 2 or 3 vertical high-pressure pumps, for fully electronic control to ensure the required supply pressure, with standard volt-free changeover contact for general fault indication and live-zero monitoring of the connected sensors. Automated with BoosterControl. Applications: Pressure boosting in residential buildings, hospitals, office buildings, hotels, department stores, industrial plants, etc.	
		http://shop.ksb.com/catalog/k0/en/product/ES000595	

Surpress Eco SE.2.B VP

Rp / DN Q [m³/h] H [m] p [bar] T [°C]	may 70	Description: Fully automatic package pressure booster system with either 2 or 3 vertical high-pressure pumps. Continuously variable speed adjustment of all pumps for fully electronic control of the required supply pressure, with two standard volt-free changeover contacts for fault indication. Automated with BoosterControl and PumpDrive. Applications: Pressure boosting in residential buildings, hospitals, office buildings, hotels, department stores, industrial plants, etc.	
		http://shop.ksb.com/catalog/k0/en/product/ES000695	

Surpresschrom SIC.2

Rp / DN 2 / 250 Q [m³/h] max. 660 H [m] max. 160 p [bar] max. 16 T [°C] max. +70 Data for 50 Hz operation	Fully automatic package pressure booster system with 2 to 6 vertical high-pressure pumps, with fully electronic control system ensuring the required supply pressure, with standard volt-free changeover contact for general fault indication and live-zero monitoring of the connected
	http://shop.ksb.com/catalog/k0/en/product/ES000439

Surpresschrom SIC.2 V

Rp / DN Q [m³/h] H [m] p [bar] T [°C]	max. 660	Applications: Pressure boosting in residential buildings, hospitals, office buildings,	
		hotels, department stores, industrial plants, etc.	
		http://shop.ksb.com/catalog/k0/en/product/ES000702	

Surpresschrom SIC.2 SVP

Rp / DN Q [m³/h] H [m] p [bar] T [°C]	may 660	Description: Fully automatic package pressure booster system with 2 to 6 vertical high-pressure pumps. Continuously variable speed adjustment of all pumps with PumpDrive for fully electronic control of the required supply pressure. Automated with BoosterControl and PumpDrive. Applications: Pressure boosting in residential buildings, hospitals, office buildings, hotels, department stores, industrial plants, etc.	
		http://shop.ksb.com/catalog/k0/en/product/ES000701	

Surpressbloc SB

DN Q [m³/h] H [m] p [bar] T [°C]	max, 640	Applications:

Surpress Feu SFE

Pumps

Rp Q [m³/h] H [m] p [bar] T [°C]	max. 40 max. 76 max. 10 max. +70	APSAD regulation R5. Pressure-controlled starting and stopping. Automated with BoosterControl. Applications:	
 	max. +/0 Data for 50 Hz operation	Applications: Water supply and pressure boosting for wall hydrants, fire protection.	E1497.4%
		http://shop.ksb.com/catalog/k0/en/product/ES000441	

Surpress SP

Rp Q [m³/h] H [m] p [bar] T [°C] Data for 50	max. 36	Design and functions to EN 806-2.	
		http://shop.ksb.com/catalog/k0/en/product/ES000886	

Surpress SP VP

Rp Q [m³/h] H [m] p [bar] T [°C] Data for 50 H	max. 36 max. 70 max. 16 max. +70	Description: Fully automatic package pressure booster system with either two or three vertical high-pressure pumps. Continuously variable speed adjustment of all pumps for fully electronic control of the required supply pressure at the consumer installations. Design and function to DIN EN 806-2 and DIN 1988. Automated with BoosterControl. Applications: Residential buildings, hospitals, office buildings, hotels, department stores, industrial plants, etc.	
		http://shop.ksb.com/catalog/k0/en/product/ES000892	

Drainage pumps / waste water pumps

Ama-Drainer N 301 – 358

2224	Rp Q [m³/h] H [m] T [°C]	denth: 7 m	
Switchgear, LevelContinue	rol	http://shop.ksb.com/catalog/k0/en/product/ES000771	

Ama-Drainer 4../5..

	Rp Q [m³/h] H [m] T [°C]	Description: Vertical single-stage fully floodable submersible motor pumps in close- coupled design, IP68, with or without level control, max. immersion depth: 7 m. Applications: Automatic drainage of pits, shafts, yards and cellars at risk of flooding, lowering of surface water levels, drainage, drainage of underground passages, water extraction from rivers and reservoirs.	
Switchgear, LevelControl		http://shop.ksb.com/catalog/k0/en/product/ES000078	

Ama-Drainer 80, 100

	Rp / DN		Description:	जन्म स्था
	Q [m³/h]	max. 130	Vertical single-stage fully floodable submersible motor pump in close-	後期
	H [m]	max. 26		7.22 ·
	T [°C]	max. +50	depth: 10 m.	
-		Data for 50 Hz operation	Applications: Automatic drainage of pits, shafts, yards and cellars at risk of flooding,	24X
		Also available for 60 Hz	lowering of surface water levels, drainage, drainage of underground passages, water extraction from rivers and reservoirs.	
Switchgear, LevelCont	trol		http://shop.ksb.com/catalog/k0/en/product/ES000079	

Ama-Porter F / S

	DN Q [m³/h] H [m] T [°C]	close-coupled design (grey cast iron variant), non-explosion-proof.	
Switchgear, LevelControl		http://shop.ksb.com/catalog/k0/en/product/ES000082	

Rotex

1	Rp Q [m³/h] H [m]	max. 24 max. 14	1 ¹ / ₄ - 2 Description: max. 24 Vertical single-stage centrifugal pump with discharge to the top and max. 14 parallel with the pump shaft, pump base designed to act as suction	
	H [m] Inst. depth [m] T [°C]	max. 14 max. 1.7 max. +90	parallel with the pump shaft, pump base designed to act as suction strainer. Pump and motor are rigidly connected by a support column. Supplied ready to be plugged in, with 1.5-metre power cable and level switch.	
	n [rpm] Data for 50 Hz ope	max. 2900 eration	Applications: Automatic drainage of buildings, pits and tanks, lowering of surface water levels and drainage.	
			http://shop.ksb.com/catalog/k0/en/product/ES000012	

MK / MKY

		Rp / DN Q [m ³ /h] H [m] Inst. depth [m] T [°C] n [rpm] Data for 50 Hz op	max. 36 max. 19 max. 2.8 max. +200 max. 3500	Description: Vertical submersible pump with three-channel impeller, volute casing designed as inlet strainer. Applications: For pumping condensate and heat transfer liquids below boiling point, condensate return systems, primary and secondary heating circuits, for direct installation in heating tanks or heat exchangers in the secondary circuits of heat transfer systems (MKY).	
Switchgear, LevelControl				http://shop.ksb.com/catalog/k0/en/product/ES000013	

Lifting units / pump stations

AmaDS³

	Q [m ³ /h] H [m] T [°C] Higher ratings po	max. 85		
LevelControl			http://shop.ksb.com/catalog/k0/en/product/ES000858	

Pumps

Ama-Drainer-Box Mini

5	DN Q [m³/h] H [m] T [°C]	40 max.10 max. 6.5 max. +35 Data for 50 Hz operation	Reliable and compact waste water lifting unit in a modern design with activated carbon filter meeting hygiene requirements and with shower compaction as standard. To EN 12050.2	
			http://shop.ksb.com/catalog/k0/en/product/ES000862	

Ama-Drainer-Box

-33-5 14 01	10	DN Q [m³/h] H [m] T [°C]	max. 46	Description: Stable above-floor plastic collecting tank or impact-resistant underfloor plastic collecting tank, with floor drain and odour trap, both with Ama- Drainer submersible motor pump starting and stopping automatically and swing check valve. Applications: Washbasins, showers, washing machines, garage driveways, basements and rooms at risk of flooding, etc.	
				http://shop.ksb.com/catalog/k0/en/product/ES000262	

Evamatic-Box N

	DN Q [m³/h] H [m] T [°C]	Description: Floodable lifting unit for domestic waste water, equipped with either one or two pumps of type Ama-Porter F (free-flow impeller) or Ama- Porter S (cutter). Applications: Disposal of domestic and municipal waste water occurring below the flood level.	
		http://shop.ksb.com/catalog/k0/en/product/ES000430	

mini-Compacta

KSB D	DN Q [m³/h] H [m] T [°C]] max. 36	Description: Floodable single-pump sewage lifting unit or dual-pump sewage lifting unit for automatic disposal of domestic sewage and faeces in building sections below the flood level. Applications: Basement flats, bars, basement party rooms and saunas, cinemas and theatres, department stores, hospitals, hotels, restaurants or schools.	
			http://shop.ksb.com/catalog/k0/en/product/ES000261	

Compacta

Jan Barris	DN Q [m³/h] H [m] T [°C]	max, 140	building soctions below the fleed level	
			http://shop.ksb.com/catalog/k0/en/product/ES000260	

CK 800 Pump Station

DN Q [m³/h] H [m] T [°C]	either one or two submersible waste water pumps of type Amarex N S (explosion-proof or non-explosion-proof) or Ama-Porter (non-explosion- proof). Tank design to DIN 1986-100 and EN 752 / EN 476. Applications: Building and property drainage, waste water disposal, property	
	11	
	http://shop.ksb.com/catalog/k0/en/product/ES000778	

CK 1000 Pump Station

-1.	DN Q [m³/h] H [m] T [°C]	Description: Ready-to-connect package single-pump or dual-pump station with PE- LLD (polyethylene) collecting tank for buried installation. Equipped with either one or two submersible waste water pumps of type Amarex N (explosion-proof or non-explosion-proof) or Ama-Porter (non-explosion- proof). Tank design to DIN 1986-100 and EN 752 /EN 476. Applications: Building and property drainage, waste water disposal, property renovation, joint sewage disposal for multiple residential units, pumped drainage.	
		http://shop.ksb.com/catalog/k0/en/product/ES000266	

Ama-Porter CK Pump Station

DN Q [m³/h] H [m] T [°C]	one or two nen explosion preef Ama Perter submersible waste water	
	http://shop.ksb.com/catalog/k0/en/product/ES000498	

SRP

	Q [m³/h] ma H [m] m	ax. 500 nax. 68 ax. +40	Description: Ready-to-connect package single-pump or dual-pump station with fibreglass collecting tank for buried installation. Applications: Property renovation, disposal of domestic, municipal and industrial waste water, joint sewage disposal for multiple residential units.
Switchgear			http://shop.ksb.com/catalog/k0/en/product/ES000443

Submersible motor pumps

Amarex N S32

	DN Q [m³/h] H [m] T [°C]	single stage single entry close coupled nump sets which are not self	
Switchgear, LevelContr	ol	http://shop.ksb.com/catalog/k0/en/product/ES000507	

Amarex N

	DN Q [m³/h] H [m] T [°C]	50 – 100 max. 190 max. 49 max. +60 Data for 50 Hz operation Also available for 60 Hz	Vertical single-stage submersible motor pump for wet installation, stationary or transportable version. Amarex N pumps are floodable, single-stage, single-entry close-coupled pump sets which are not self- priming. ATEX-compliant version available. Applications: Pumping waste water, especially untreated waste water containing long fibres and solid substances, fluids containing gas or air, and raw,	
			activated and digested sludge; for dewatering and water extraction, drainage of rooms and areas at risk of flooding.	
Switchgear, LevelContro	ol		http://shop.ksb.com/catalog/k0/en/product/ES000507	

Amarex KRT

		max. 10080 max. 120 max. +60	Description: Vertical single-stage submersible motor pump in close-coupled design, with various impeller types, for wet installation, stationary or transportable version. ATEX-compliant version available. Applications: Pumping abrasive or aggressive waste water in water and waste water management, seawater desalination and industry, especially untreated waste water containing long fibres and solid substances, liquids containing gas or air, and raw, activated and digested sludge.	
Amacontrol, LevelCont	trol		http://shop.ksb.com/catalog/k0/en/product/ES000092	

Amarex KRT, with jacket cooling

	DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	max. 10080 max. 120	with various impeller types, for wet or dry installation. Applications: Pumping waste water in waste water management and industry, especially untreated waste water containing long fibres and solid	
Amacontrol, LevelCont	rol		http://shop.ksb.com/catalog/k0/en/product/ES000092	

Amarex KRT, with convection cooling

	DN Q [m³/h] H [m] T [°C] n [rpm]		stationary or transportable version, with energy-saving motor.
Amacontrol, LevelControl			http://shop.ksb.com/catalog/k0/en/product/ES000092

Submersible pumps in discharge tubes

Amacan K

	max. 7200	Description: Wet-installed submersible motor pump for installation in discharge tubes, with channel impeller, single-stage, single-entry. ATEX-compliant version available. Applications: Pumping pre-cleaned chemically neutral waste water, industrial effluent, sewage, fluids not containing any stringy substances, pre-treated by screens and overflow sills; as waste water, mixed sewage and activated sludge pumps in waste water treatment plants, irrigation and drainage pumping stations.	
Amacontrol		http://shop.ksb.com/catalog/k0/en/product/ES000100	

Amacan P

	DN Q [m³/h] H [m] T [°C] n [rpm]	max. 25200	Description: Wet-installed submersible motor pump for installation in discharge tubes, with axial propeller in ECB design, single-stage, single-entry. ATEX-compliant version available. Applications: Irrigation and drainage pumping stations, for stormwater transport in stormwater pumping stations, raw and clean water transport in water and waste water treatment plants, cooling water transport in power stations and industrial plants, industrial water supply, water pollution and flood control, aquaculture.	
Amacontrol			http://shop.ksb.com/catalog/k0/en/product/ES000099	

Amacan S

IJ	DN		Description:	
	Q [m³/h]	max. 10800	Wet-installed submersible motor pump for installation in discharge	
1	H [m]	max. 40	tubes, with mixed flow impeller, single-stage. ATEX-compliant version	
	T [°C]	max. +30	available.	1000000
	n [rpm]	max. 1450	Applications:	回新游艇
		or 50 Hz operation	Pumping water not containing stringy material in irrigation and	
		vailable for 60 Hz	drainage pumping stations, general water supply systems, water pollution and flood control.	
	Also a	Vallable for 60 Hz	•	
Amacontrol			http://shop.ksb.com/catalog/k0/en/product/ES000101	

Mixers / agitators / tank cleaning units

Amamix

Se la	Propeller Ø [mm] Inst. depth [m] T [°C] n [rpm] Data for 50 Hz op Also available for	max. 30 max. +40 max. 1400 eration	Description: Horizontal submersible mixer with self-cleaning ECB propeller, close- coupled design, direct drive. ATEX-compliant version available. Applications: For handling municipal and industrial waste water and sludges in environmental engineering (also in biogas plants).	
			http://shop.ksb.com/catalog/k0/en/product/ES000268	

Amaprop

Propeller Ø [mm] Inst. depth [m] T [°C] n [rpm]	Description: Horizontal submersible mixer with self-cleaning ECB propeller, close- coupled design, with coaxial spur gear drive. ATEX-compliant version available. Applications: Environmental engineering, particularly for handling municipal and industrial waste water and sludges. Circulating, keeping in suspension and inducing flow in nitrification and denitrification tanks, activated sludge tanks, mixing tanks, final storage tanks, biological phosphate elimination tanks, flocculation tanks and in biogas applications.	
	http://shop.ksb.com/catalog/k0/en/product/ES000271	

Amajet

	DN Q [m³/h] T [°C] n [rpm]	max. 195 max. +40 max. 1450	Description: Stationary or portable unit with horizontally or vertically mounted submersible propulsive jet pump with non-clogging free-flow impeller. Motor ratings of 5.5 to 27 kW. Available variants: Amajet, SewerAmajet, SwingAmajet, MultiAmajet. Applications: Cleaning stormwater tanks and storage sewers.	
		Data for 50 Hz operation Also available for 60 Hz		

http://shop.ksb.com/catalog/k0/en/product/ES000097

Amaline

O [m ³ /h] max 54	Compliant version available. Applications: Recirculating activated sludge in waste water treatment systems.
	http://shop.ksb.com/catalog/k0/en/product/ES000273

Pumps for solids-laden fluids

Sewatec

	DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	max. 10000 max. 115 max. 10 max. +70	compliant version available.	
PumpDrive, LevelControl			http://shop.ksb.com/catalog/k0/en/product/ES000068	

Sewabloc

	DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	max. 1000 max. 80 max. 10 max. +70	available.	
PumpDrive, LevelContr	ol		http://shop.ksb.com/catalog/k0/en/product/ES000069	

KWP / KWP-Bloc

	DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	max 15000	types: channel impeller, open multi-channel impeller and free-flow impeller. ATEX-compliant version available.	
PumpDrive			http://shop.ksb.com/catalog/k0/en/product/ES000018	

Slurry pumps

WBC

C.S.	Q [m³/h] H [m] p [bar] T [°C]	max. 80	Description: Patented design with state-of-the-art hydraulic and wear technologies for high-pressure applications. The pump casing is designed to withstand maximum stresses, e.g. during pressure surges. Applications: Ideal for the single-stage or multistage transport of ore and tailings and for dredging.	
			http://shop.ksb.com/catalog/k0/en/product/ES000227	

LSA-S

Q [m³/h] H [m] p [bar] T [°C]	max 90	Description: Premium design white cast iron pump for long service life handling severe slurries. The maintenance-friendly single-wall construction and heavy section white cast iron wet end combined with the cartridge bearing assembly provides maximum reliability and ease of maintenance. Applications: Ore and tailings transport, cyclone feed, dredging (dry-installed or submerged operation) and industrial processes.	
		http://shop.ksb.com/catalog/k0/en/product/ES000220	

LCC-M

Q [m³/h] H [m] p [bar] T [°C]	max 90	Description: The wetted pump end (casing, impeller and suction plate / liner) is made of white cast iron. Design optimised to permit easy dismantling and reassembly for maintenance and inspections. Applications: Reliable pump for high heads and moderately corrosive slurries. Used in mine dewatering, ash and tailings transport and dredging.	
		http://shop.ksb.com/catalog/k0/en/product/ES000217	

LCC-R

Q [m³/h] H [m] p [bar] T [°C]	max. 42	end	
		http://shop.ksb.com/catalog/k0/en/product/ES000218	

TBC

Ø	Q [m³/h] H [m] p [bar] T [°C]	max. 90		
			http://shop.ksb.com/catalog/k0/en/product/ES000226	

LCV

r	Q [m³/h] H [m] p [bar] T [°C]	max. 38 max. 14	Description: Rugged vertical shaft submersible pump with casing, impeller and suction plate / liner made of white cast iron, bearing assembly located out of product. Replaceable wetted parts made of white cast iron or	
F		max. 38 max. 14 max. +120	suction plate / liner made of white cast iron, bearing assembly located	
Ę			Particularly suitable for use in industrial processes and for transporting tailings in mines and pits.	
			http://shop.ksb.com/catalog/k0/en/product/ES000016	

FGD

Q [m³/h] H [m] p [bar] T [°C]	mounting plata	
	http://shop.ksb.com/catalog/k0/en/product/ES000231	

Mega

Q [m³/h] H [m] p [bar] T [°C]	max. 30 max. 24	Description: Horizontal end-suction volute casing pump with open three-vane impeller for handling solids-laden liquids. Applications: Low-volume hydrotransport of solids-laden liquids and abrasive slurries.	
		http://shop.ksb.com/catalog/k0/en/product/ES000229	

MHD

Q [m³/h] H [m] p [bar] T [°C]	max 80	and susting behavious and bigh officiancy. Duran components mode of	
		http://shop.ksb.com/catalog/k0/en/product/ES000224	

LHD

Q [m³/h] H [m] p [bar] T [°C]	max. 65	Description: Horizontal volute casing pump for high-volume hydrotransport of solids. For pumping slurries of large and very large particle sizes with a very good suction behaviour and high efficiency. Used in low-pressure applications. Pump components made of white cast iron. Applications: Ideal for handling sand and gravel, on dredgers for land reclamation and as booster pumps.	
		http://shop.ksb.com/catalog/k0/en/product/ES000223	

MDX

	Q [m³/h] H [m] p [bar] T [°C]	max. 90 max. 16	Description: Pump designed with the latest technology from GIW. Superior wear properties and extremely long service life handling aggressive slurries. Applications: Designed for SAG and ball mill discharge duties, cyclone feed, screen feed and other ore mining and treatment processes.	
--	--	--------------------	--	--

ZW

Pumps

U	Q [m³/h] H [m] p [bar] T [°C]	max. 35	Description: Rugged vertical shaft submersible pump with casing, impeller and suction cover made of white cast iron, top and bottom impeller inlet. Bearings not exposed to fluid handled. Replaceable wetted components. Applications: Particularly suitable for pumping abrasive slurries, dewatering, floor clean-up and process applications.	
			http://shop.ksb.com/catalog/k0/en/product/ES000852	

HVF

M	Q [m³/h] H [m] p [bar] T [°C]	max. 50 max. 11	and the property of the proper	
			http://shop.ksb.com/catalog/k0/en/product/ES000851	

Self-priming pumps

Etaprime L

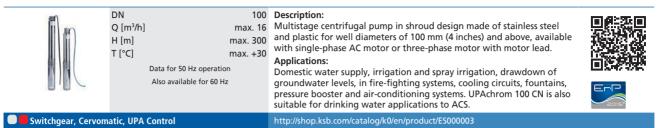
	DN		Description:
111	Q [m³/h]	max. 180	Horizontal self-priming volute casing pump, single-stage, with open
A CAR	H [m]	max. 85	multi-vane impeller, from size 40-40-140 with bearing bracket, in back
	p [bar]	max. 10	pull-out design, ATEX-compliant version available.
	T [°C]	-30 to +90	Applications:
			Pumping clean, contaminated or aggressive fluids not containing
	H _{geo} [m]	max. 9	Pumping clean, contaminated or aggressive fluids not containing abrasive substances and solids. For use in spray irrigation systems, service
		Data for 50 Hz operation	water systems, drainage, dewatering systems, fire-fighting systems,
		Also available for 60 Hz	drawdown of groundwater levels, domestic water supply, air-
			conditioning systems, cooling circuits, swimming pools, water supply
			systems.
			http://shop.ksb.com/catalog/k0/en/product/ES000120

Etaprime B

DN Q [m³/h] H [m] p [bar] T [°C] H _{geo} [m]	max. 130 max. 70 max. 10	connected; ATEX-compliant version available. Applications: Pumping clean, contaminated or aggressive fluids not containing
		http://shop.ksh.com/catalog/k0/en/product/ES000119

EZ B/L

AU


DN Q [m³/h] H [m] p [bar] T [°C]	max. 600 max. 52 max. 10	Pumping clean, contaminated and aggressive fluids also containing solids. In fresh water and seawater circuits, fire-fighting applications, as ballast and bilge pumps, and for drainage and waste water applications.	
		http://shop.ksb.com/catalog/k0/en/product/ES000750	

AU Monobloc

1 3 4 La	DN		Description:	13.82% (31
	Q [m³/h]	max. 53	Horizontal, self-priming centrifugal pump in close-coupled design, open	思いで見
and the y	H [m]	max. 37	or semi-open impeller, adjusted via wear plate, with mechanical seal,	
GA A T	p [bar]	max. 10	driven by electric motors or internal combustion engines, ATEX-	
	T [°C]	-10 to +80	compliant version available.	回貨業業
			Applications:	
		Data for 50 Hz operation	Pumping clean, contaminated and aggressive fluids also containing	
		Also available for 60 Hz	solids. In fresh water and seawater circuits, fire-fighting applications, as	
			ballast and bilge pumps, and for drainage and waste water applications.	
			http://shop.ksb.com/catalog/k0/en/product/ES000715	

Submersible borehole pumps

UPAchrom 100 CN

UPAchrom 100 CC

			Applications: Domestic water supply, irrigation and spray irrigation, drawdown of groundwater levels, in fire-fighting systems, cooling circuits, fountains, pressure booster and air-conditioning systems. UPAchrom 100 CC is also	
			suitable for drinking water applications to ACS.	2015
Switchgear Cervomatic LIPA Control			http://shop.ksb.com/catalog/k0/en/product/FS000003	

UPA 150C

	Q [m ³ /h] max. 7 H [m] max. 44	 Description: All-stainless steel single-stage or multistage centrifugal pump in ring- section design for well diameters of 150 mm (6 inches) and above. Applications: Pumping clean or slightly contaminated water, irrigation and drainage, spray irrigation, industrial and municipal water supply, drawdown and maintenance of groundwater levels, fire fighting, supply of drinking, raw and service water, pressure boosting. 	
PumpDrive, KSB UMA-S	;	http://shop.ksb.com/catalog/k0/en/product/ES000003	

UPA 200, 200B, 250C

	DN Q [m³/h] H [m] T [°C]	Description: Single-stage or multistage single-entry centrifugal pump in ring-section design for vertical or horizontal installation. Optionally available with lift check valve or connection branch. Applications: Pumping clean or slightly contaminated water in general water supply, spray irrigation and irrigation, drawdown and maintenance of groundwater levels, fountains and pressure booster systems, mining, fire-fighting systems, emergency water supply, etc.	
PumpDrive, KSB UMA-S		http://shop.ksb.com/catalog/k0/en/product/ES000003	

UPA 300, 350

	DN Q [m³/h] H [m] T [°C]	Description: Single-stage or multistage single-entry centrifugal pump in ring-section design for vertical or horizontal installation. Mixed flow hydraulic systems with impellers that can be turned down. Optionally available with lift check valve or connection branch. Applications: Pumping clean or slightly contaminated water in general water supply, spray irrigation and irrigation, drawdown and maintenance of groundwater levels, mining, fountains and fire-fighting systems, etc.	
PumpDrive, KSB UMA-	S	http://shop.ksb.com/catalog/k0/en/product/ES000003	

Р	u	m	าเ	n	s
	u			μ	-

UPZ, BSX-BSF

	installation
PumpDrive	http://shop.ksb.com/catalog/k0/en/product/ES000003

Deep-well turbine pumps

BEV

	1	Q [m ³ /h] max. 2200	packing, driven by electric motor or diesel engine. ATEX-compliant version available. Applications:	
--	---	---------------------------------	--	--

High-pressure pumps

Comeo

	Rp / DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	max. 55	Multistage, horizontal, close-coupled centrifugal pump Applications: Water supply, small pressure booster systems, irrigation, cooling	
Frequency inverter			http://shop.ksb.com/catalog/k0/en/product/ES000912	

Movitec H(S)I

Ġ	Rp / DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	max. 26.3 max. 195	Description: Multistage horizontal high-pressure centrifugal pump Applications: Spray irrigation, general irrigation, washing, water treatment, fire- fighting and pressure booster systems, hot water and cooling water recirculation, boiler feed systems, etc.	
PumpMeter, PumpDrive, KSB SuPremE			http://shop.ksb.com/catalog/k0/en/product/ES000927	

Movitec

	Rp / DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	max. 401 max. 40 max. 40		
PumpMeter, PumpD	Drive, KSB SuPremE		http://shop.ksb.com/catalog/k0/en/product/ES000854	

Movitec VCI

	Rp / DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	max. 249	Multistage vertical high-pressure immersion pump for installation on	
PumpDrive KSB 9	SupromE		http://shop.ksh.com/catalog/k0/en/product/ES000870	

Multitec

	DN Q [m³/h]		Description: Multistage centrifugal pump in ring-section design. Horizontal	
	H [m] p [bar] T [°C] n [rpm]	-10 to $+200$	installation in long-coupled or close-coupled design. Vertical installation in close-coupled design or with universal joint shaft. With either one or two roller bearings. Axial or radial suction nozzle, radial discharge nozzle. Radial suction and discharge nozzles can be turned in steps of 90°. ATEX-compliant and ACS-compliant versions available.	
			Applications: Water and drinking water supply systems, industry, pressure booster systems, irrigation systems, power stations, heating, filter, fire-fighting, reverse osmosis and snow-making systems, washing plants, etc.	
PumpMeter, PumpDrive, KSB SuPremE			http://shop.ksb.com/catalog/k0/en/product/ES000214	

Axially split pumps

Omega

	DN Q [m³/h] H [m] p [bar] T [°C] n [rpm] Data for 50 Hz and 60 Higher ratings possible	max. 210 max. 25 max. +140 max. 3500 Hz operation	Single-stage axially split volute casing pump for horizontal or vertical installation, with double-entry radial impeller, mating flanges to DIN, EN or ASME. Applications: Pumping water with a low solids content e.g. in waterworks irrigation	
PumpMeter, PumpDriv	PumpMeter, PumpDrive		http://shop.ksb.com/catalog/k0/en/product/ES000071	

RDLO

		max. 10000 max. 290 max. 30	or ASME. Applications: Pumping water with a low solids content e.g. in waterworks irrigation	
PumpMeter, Frequency inverter			http://shop.ksb.com/catalog/k0/en/product/ES000170	

RDLP

	DN Q [m ³ /h] H [m] p [bar] T [°C] n [rpm] Data for 50 Hz and Higher ratings poss	max. 18000 max. 550 max. 64 max. +80 max. 1800 60 Hz operation	DIN, ISO or ANSI. Applications: Pumping water with a low solids content, e.g. in waterworks and long-	
PumpMeter, Frequency inverter			http://shop.ksb.com/catalog/k0/en/product/ES000171	

Hygienic pumps

Vitachrom

	DN Q [m³/h] H [m] p [bar] T [°C]	may 340	Description: Service-friendly non-priming, close-coupled single-stage hygienic pump in back pull-out design. The pump features a semi-open impeller and electropolished surfaces. It is very easy to clean by CIP/SIP thanks to its almost complete lack of dead volume or narrow clearances. Its wetted components are made of 1.4404/1.4409 (AISI 316L/CF3M) stainless steel. Vitachrom is EHEDG-certified. All materials comply with FDA standards and EN 1935/2004. ATEX-compliant version available. Applications: Hygienic handling of fluids in the food, beverage and pharmaceutical industries and in the chemical industry.	
PumpDrive, KSB SuPre	mE		http://shop.ksb.com/catalog/k0/en/product/ES000030	

Vitacast

Pumps

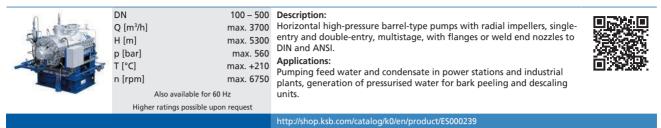
	DN 25 - 150 Q [m³/h] max. 560 H [m] max. 100 p [bar] max. 10 T [°C] max. +140 Data for 50 Hz operation Also available for 60 Hz Other ratings possible on request	Service-friendly volute casing pump with standardised motor. All wetted components are made of 1.4404/1.4409 (AISI 316L/CF3M) stainless steel. Designed with very little dead volume; open impeller, electropolished surface excellent efficiency. Hygienic design for the highest
PumpDrive		http://shop.ksb.com/catalog/k0/en/product/ES000785

Vitaprime

	Q [m ³ /h] max. 55 H [m] max. 45 p [bar] max. 10 T [°C] max. +140 Data for 50 Hz operation	1.4404/1.4409 (AISI 316L/CF3M) stainless steel. Hygienic design for the highest requirements of cleanability (CIP/SIP-compatible). All materials comply with FDA standards and EN 1935/2004. Trolley available among other accessories. ATEX-compliant version available.	
	Data for 50 Hz operation Also available for 60 Hz Other ratings possible on request	other accessories. ATEX-compliant version available. Applications: Hygienic handling of fluids in the food, beverage and pharmaceutical industries and in the chemical industry.	
PumpDrive		http://shop.ksb.com/catalog/k0/en/product/ES000787	

PumpDrive

Vitastage


	A	max 150	1 MO1/1 MO8 (AISI 316/CE8M) staipless steel Versatile robust and
PumpDrive			http://shop.ksb.com/catalog/k0/en/product/ES000788

Vitalobe

	Also avai	25 – 200 (1"– 8") max. 300 max. 200 max. 30 -40 to +200 max. 200000 50 Hz operation ilable for 60 Hz possible on request	Sturdy rotary lobe pump in hygienic design, bi-directional operation possible, horizontal or vertical orientation of connections. Hygienic design, highly CIP/SIP-compatible due to its almost complete lack of dead volume or narrow clearances. All wetted components made of 1.4404/1.4409 (AISI 316L/CF3M) stainless steel; various rotor types, shaft	
PumpDrive			http://shop.ksh.com/catalog/k0/en/product/ES000847	

Pumps for power station conventional islands

CHTA / CHTC / CHTD

HGB / HGC / HGD

	max. 2300 max. 5300 max. 560	Description: Horizontal radially split ring-section pump with radial impellers, single- entry or double-entry, multistage. Applications: Pumping feed water and condensate in power stations and industrial plants, pressurised water generation for bark peeling and descaling units, snow guns, etc.	
		http://shop.ksb.com/catalog/k0/en/product/ES000233	

HGM

|--|--|--|--|

http://shop.ksb.com/catalog/k0/en/product/ES000236

YNK

DN Q [m³/h] H [m] p [bar] T [°C] n [rpm] Higher ratings possible up	max. 4500 max. 370 max. 40 max. +210 max. 1800	Description: Horizontal radially split single-stage double-entry boiler feed booster pump (booster system) with cast steel single or double volute casing. Applications: Pumping feed water in power stations and industrial plants.	
		http://shop.ksb.com/catalog/k0/en/product/ES000181	

LUV / LUVA

THE REAL PROPERTY AND INCOMENTS	H [m] p [bar] T [°C]	max. 7000 max. 300 max. 400 max. +425 max. 3600 50 Hz	Integrated wat winding materia VDE Product lubricated bearings no	
			http://shop.ksh.com/catalog/k0/en/product/ES000183	

Pumps

	max. 1500 max. 370 max. 40 max. +140 1500 a for 50 Hz operation		
	a for 50 Hz operation ings possible upon request		
		http://shop.ksb.com/catalog/k0/en/product/ES000506	

SEZ / SEZT / PHZ / PNZ

9	Q [m³/h] H [m] T [°C] n [rpm] Data for 50 Hz op:	max. 120 max. +40 max. 980	or suction elbow, pull-out design available, discharge nozzle arranged above or below floor level, flanges to DIN or ANSI standards available.	
M	Also available for Higher ratings possible u	60 Hz	Applications: Pumping raw, clean, service and cooling water in industry, water supply systems, power stations and seawater desalination plants.	
			http://shop.ksb.com/catalog/k0/en/product/ES000173	

SNW / PNW

1	DN Q [m³/h] H [m] p [bar] T [°C] n [rpm] Data for 50 Hz opera Also available for 60 Higher ratings possible upo	max. 9000 max. 50 max. 10 max. +60 max. 1500 tion Hz	Description: Vertical tubular casing pump with mixed flow impeller (SNW) or axial propeller (PNW), single-stage, with maintenance-free Residur bearings, discharge nozzle arranged above or below floor level. Applications: Irrigation and drainage systems, stormwater pumping stations, pumping raw and clean water, water supply, cooling water.	
			http://shop.ksb.com/catalog/k0/en/product/ES000176	

Beveron

A A A	Also av	Description: Concrete volute casing pump with mixed flow impeller, single-stage, with zero-maintenance lubricant-free Residur bearings. Applications: Coast protection and flood control, irrigation and drainage, low-lift pumping stations, reservoir filling, cooling water, raw and clean water.	
		http://shop.ksb.com/catalog/k0/en/product/ES000868	

SPY

Q [m³/h] max. H [m] n p [bar] n T [°C] max	x. 21600 max. 50 max. 10 ax. +105 ax. 1480	and the second second second second second second second second second second second second second second second	
		http://shop.ksb.com/catalog/k0/en/product/ES000422	

Pumps for nuclear power stations

RER

DN max. 800 Q [m³/h] max. 40000 H [m] max. 140 p [bar] max. 175 T [°C] max. +350 n [rpm] max. 1800 Available for 50 Hz and 60 Hz

max. 800
 Description:
 max. 40000
 Vertical, single-stage reactor coolant pump with forged circular casing
 plated on the inside, with diffuser, either with integrated pump thrust
 bearing or shaft supported by motor bearing.
 Applications:
 Reactor coolant recirculation in nuclear power stations.

Higher ratings possible upon request

http://shop.ksb.com/catalog/k0/en/product/ES000144

RSR

O [m ³ /h] max 24	 Reactor coolant recirculation in nuclear power stations.
	http://shop.ksb.com/catalog/k0/en/product/ES000146

RUV

H [m] p [bar] T [°C]	max. 22000 max. 111 max. 155 max. +350 max. 1800 50 Hz	Description: Vertical, single-stage reactor coolant pump. Seal-less design with integrated wet rotor motor and integrated flywheel. Product-lubricated bearings, no oil supply systems required. Applications: Reactor coolant recirculation in generation III+ nuclear power stations.	
		http://shop.ksb.com/catalog/k0/en/product/ES000848	

PSR

Q [m³/h] max. 9 H [m] max	00	
	http://shop.ksb.com/catalog/k0/en/product/ES000150	

RHD

		Q [m³/h] max. H [m] max. p [bar] may T [°C] max.	6500 1000 (. 150 +210 6500	Applications: Main food water cumply (MEW/S) in steam generation systems of puckar	
--	--	---	--	---	--

LUV Nuclear

-	DN 40-600	Description:
	Q [m³/h] max. 7000	Vertical pump with integrated motor, single-entry, single- to three-
1 million	H [m] max. 300	stage. Suitable for very high inlet pressures and temperatures. Integrated wet winding motor to VDE. Product-lubricated bearings, no
THERE'S	p [bar] max. 320	oil supply systems required. Design to ASME Section 3, KTA, etc.
	T [°C] max. +430	
		Applications:
- August	Available for 50 Hz and 60 Hz	As reactor water clean-up pump in boiling water reactors, reactor
- minutes	Higher ratings possible upon request	coolant pump in boiling water and pressurised water reactors and
		recirculation pump in test facilities.
		http://shop.ksb.com/catalog/k0/en/product/ES000855

RHM

DN Q [m³/h] H [m] p [bar] T [°C] n [rpm] Available for 50 Hz and Higher ratings possible upp	max. 300 max. 2100 max. 220 max. +180 max. 8000 60 Hz	chemical and volume control systems, control rod drive systems, high- pressure and medium-pressure safety injection systems, emergency feed water systems, start-up and shut-down feed water systems, high- pressure charging.	
		http://shop.ksb.com/catalog/k0/en/product/ES000245	

RVM

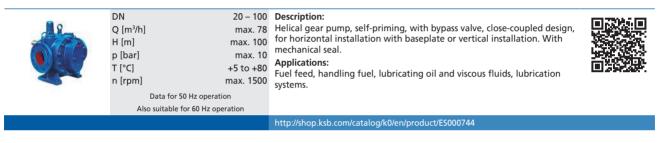
Q [m³/h] max. 5	chemical and volume control systems, high-pressure and medium-
-----------------	--

RHR

Q [m³/h] ma H [m] m p [bar] r T [°C] ma	ax. 6000 nax. 190 max. 63 ax. +200 ax. 3600	Core flooding, emergency cooling and residual heat removal systems, ancillary systems, acid feed system and low-pressure injection system.	
		http://shop.ksb.com/catalog/k0/en/product/ES000140	

RVR

Q [m³/h] max H [m] ma p [bar] m T [°C] max	x. 6000 ax. 190 nax. 63 x. +200 x. 3600	Core flooding, emergency cooling and residual heat removal systems, ancillary systems, acid feed system and low-pressure injection system	
		http://shop.ksb.com/catalog/k0/en/product/ES000142	


Pumps for desalination by reverse osmosis

Multitec-RO

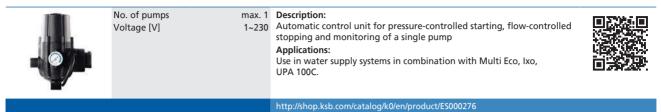
	Q [m³/h] max H [m] max. p [bar] max	 150 Description: 1850 Horizontal, multistage centrifugal pump in ring-section design. Axial suction nozzle. Discharge nozzle can be turned in steps of 90°. Closed radial impellers. Made of duplex or super-duplex stainless steel. 100 Applications: High-pressure pump for RO seawater desalination systems. 	
PumpDrive KSB SuPrei	nF	http://shop.ksb.com/catalog/k0/en/product/ES000508	

Positive displacement pumps

RC / RCV

Fire-fighting systems

() · · · · · · · · · · · · · · · · · · ·	DN	32 – 300	Description:	
	Q [m³/h]	max. 840	Automatic fire-fighting system consisting of a jockey pump and one or	
	H [m]	max. 140	several duty pumps, with electric motor or diesel engine. Includes manifold, valves, accessories and control unit. To EN 12845, CEA 4001,	
A FILL R. HE A	p [bar]	max. 16	manifold, valves, accessories and control unit. To EN 12845, CEA 4001, UNE-23500, NFPA-20, etc.	
	T [°C]	+5 to +50	Applications: Office buildings, hotels, industry, shopping malls, etc.	回洋学校
A Station	n [rpm]	max. 3000		
	Data for 50 Hz operat	tion	ornee buildings, notels, industry, shopping mulis, etc.	
	Also suitable for 60 Hz op	eration		
			http://shap.ksh.com/catalog/k0/en/product/ES000726	


DU / EU

EDS

DN Q [m ³ /h] H [m] p [bar] T [°C] n [rpm] Data for 50 Hz op Also suitable for 60 H	max. 2500 max. 150 max. 25 +5 to +50 max. 3000 eration	Description: Automatic fire-fighting system consisting of pumps with electric motor or diesel engine and control unit. To EN 12845, CEA 4001, UNE-23500, NFPA-20, FM, etc. Applications: Office buildings, hotels, industry, shopping malls, etc.	
		http://shop.ksb.com/catalog/k0/en/product/ES000727	

Control units

Controlmatic E

Controlmatic E.2

() -•	No. of pumps Voltage [V]	max. 1 1~230	Description: Automatic control unit for pressure-controlled starting, flow-controlled stopping and monitoring of a single pump Applications: Use in water supply systems in combination with Multi Eco, Multichrom S, Ixo, UPA 100C.	
			http://shop.ksh.com/catalog/k0/en/product/ES000276	

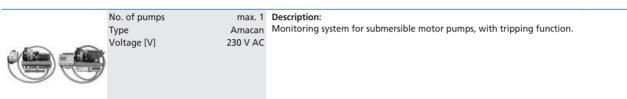
Cervomatic EDP.2

No. of pumps Voltage [V]	max. 1 1~230 / 3~400	Description: Automatic control unit for pressure-controlled starting and either pressure-controlled or flow-controlled stopping and monitoring of a single pump. Applications: Use in water supply systems with pumps of the Multi Eco, Ixo, UPA 100C and UPA 150C type series with single-phase or three-phase motors.	
		http://shop.ksb.com/catalog/k0/en/product/ES000275	

LevelControl Basic 2

No. of pumps P [kW] Voltage [V] Higher ratings and other available on re	max. 22 1~230 / 3~400	Description: Level control unit for controlling and protecting either one or two pumps. DOL starting up to 4 kW, star-delta starting up to 22 kW. Higher ratings on request. Applications: Tank drainage via float switches, digital switches, 420 mA, pneumatic (w/o compressor) or bubbler system in building services and waste water applications. Tank filling using float switches, digital switches or 420 mA in building services and water supply applications.	
		http://shop.ksb.com/catalog/k0/en/product/ES000603	

UPA Control


No. of pumps P [kW] Voltage [V]	max. 1 3 1~230 / 3~400	The KSB switchgear is suitable for level control and protection of submersible borehole pumps, submersible motor pumps and dry- installed pumps with single-phase AC motors 1~ 230 V or three-phase motors 3~ 230 / 400 V / 50 Hz. The motor is started DOL. Enclosure: IP56, dimensions: 205 × 255 × 170 mm (H × W × D). Applications: Irrigation and filling or draining tanks in water supply applications in combination with 4" and 6" pumps.	
		http://shop.ksb.com/catalog/k0/en/product/ES000006	

Hyatronic N

P [kW] 22	 Description: Pump control system in control cabinet for cascade starting and stopping of up to 6 pumps on the mains. Applications: For draining tanks and sumps in drainage and waste water disposal applications. For filling tanks in water supply applications. Level measurement via float switch or 420 mA sensor. 	
	http://shop.ksh.com/catalog/k0/en/product/ES000303	

Monitoring and diagnosis

Amacontrol

Control system

BOA-Systronic

	untapped hydraulic savings potential. Irrespective of the pump technology used, it allows savings of 50 % in pump electricity while also reducing primary energy costs thanks to lower return flow temperatures. The system can be combined with all control systems and pumps with a 0-10 V control input. Straightforward integration in automation systems with optional BACnet gateway. Applications: Supply temperature control in HVAC installations with volume flow rates of 0.5 to 185 m ³ /h and temperature differentials of 3 to 30 K. Threaded (DN20) or flanged (DN25-DN200) line connections; suitable for upgrading installed systems and for new systems, for connection to all types of heat generators (boiler or district heating), all main feed manifolds, all control systems, all supply temperatures.
	http://shop.ksb.com/catalog/k0/en/product/ES000494

Technology that makes its mark

Your local KSB representative:

The KSB newsletter – don't miss out, sign up now: www.ksb.com/newsletter

KSB Aktiengesellschaft Johann-Klein-Str. 9 67227 Frankenthal (Germany) www.ksb.com

You can also visit us at www.ksb.com/socialmedia